|本期目录/Table of Contents|

[1]张姿,薛佳丹,王惠钢.不同Cu+掺杂量MIL-53(Fe, Cu)的制备及其光芬顿性能[J].浙江理工大学学报,2022,47-48(自科四):565-572.
 ZHANG Zi,XUE Jiadan,WANG Huigang.Preparation of MIL53(Fe, Cu) with different doping contents of Cu +  and its photoFenton properties[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):565-572.
点击复制

不同Cu+掺杂量MIL-53(Fe, Cu)的制备及其光芬顿性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第四期
页码:
565-572
栏目:
出版日期:
2022-09-30

文章信息/Info

Title:
Preparation of MIL53(Fe, Cu) with different doping contents of Cu +  and its photoFenton properties
文章编号:
1673-3851 (2022) 07-0565-08
作者:
张姿薛佳丹王惠钢
1.浙江理工大学理学院,杭州 310018;2.浙江师范大学杭州高等研究院,杭州 311231
Author(s):
ZHANG ZiXUE JiadanWANG Huigang
1.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China;  2.Hangzhou Institute of Advanced Studies, Zhejiang Normal University,  Hangzhou 311231, China
关键词:
MIL 53(Fe)CuCl金属有机框架双金属光芬顿卡马西平
分类号:
TQ426-8
文献标志码:
A
摘要:
为了探究引入Cu+对MOF材料光芬顿性能影响,采用溶剂热法成功地合成双金属有机框架材料 MIL 53(Fe, Cu),通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)等对催化剂进行表征,分析掺杂Cu+对MIL53(Fe)的晶体结构、形貌、光致载流子分离的影响。结果表明:引入Cu +改变了MIL 53(Fe)的部分晶体结构和八面体形貌改变,催化剂表面变得粗糙。同时降低了Fe中心的电子密度,带隙变小,促进电子-空穴对的分离,加速Fe 2 +/Fe 3 +循环;光芬顿性能测试显示,Cu +的引入提高了 MIL 53(Fe)的降解效率,其中0.3 MIL 53(Fe, Cu)降解速率最快,0.3 MIL 53(Fe, Cu)的反应速率是MIL 53(Fe)的3倍,Vis、H 2O 2和催化剂相互作用产生的·OH是降解CBZ的主要原因。该双金属MIL 53(Fe, Cu)的制备方法简单,为后续探索高效光芬顿双金属催化剂提供了新思路。

参考文献/References:

1 Fenton H J H. Lxxiii Oxidation of tartaric acid in presence of iron J . Journal of the Chemical Society, 1894, 65: 899 - 910.

2 Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment J . Chemical Engineering Journal, 2014, 2(1): 557 - 572.

3 Clarizia L, Russo D, Somma D, et al. Homogeneous photo Fenton processes at near neutral pH: a review J . Applied Catalysis B: Environmental, 2017, 209: 358 - 371.

4 Wu Q S, Wang H J, Yi C W. Preparation of photo Fenton heterogeneous catalyst (Fe TS 1 zeolite) and its application in typical azo dye decoloration J . Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 138 - 149.

5 ]高崇 , 李亚峰 , 龚飞铭 . 芬顿法在水处理中的发展与现状[ J . 辽宁化工 , 2021, 50(3): 372 - 374.

6 Hodges B C, Cates E L, Kim J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials J . Nature Nanotechnology, 2018, 13(8): 642 650.

7 Kwan W P, Voelker B M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite J . Environmental Science & Technology, 2002, 36(7): 1467 - 1476.

8 Zhao Y B, Pan F, Li H , et al. Facile synthesis of uniform α Fe 2O 3 crystals and their facetdependent catalytic performance in the photoFenton reactionJ. Journal of Materials Chemistry A , 2013, 1(24): 7242-7246.

9 ]梁大鑫 , 张巨擘 , 郑恺 , . 磁性 Fe 3O 4微球的溶剂热法合成及光芬顿性能优化[J. 哈尔滨工业大学学报, 2017, 49(8): 90-97.

10 Miao X Z, Dai H W, Chen J X, et al. The enhanced method of hydroxyl radical generation in the heterogeneous UV Fenton system with α FeOOH as catalystJ. Separation and Purification Technology, 2018, 200: 36-43.

undefined

备注/Memo

备注/Memo:
收稿日期: 2022-01-10
网络出版日期:2022-04-08
基金项目: 国家自然科学基金项目(114329A4A18202)
作者简介: 张姿(1996-),女,江西丰城人,硕士研究生,主要从事催化材料方面的研究
通信作者: 薛佳丹,E-mail:jenniexue@126.com
更新日期/Last Update: 2022-09-06