[1]林敏鸿,蒙祖强. 基于注意力神经网络的多模态情感分析[J].计算机科学,2020,47(S2):508-514.
[2]PérezRosas V, Mihalcea R, Morency L P. Utterancelevel multimodal sentiment analysis[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria: ACL, 2013: 973-982.
[3] 范涛, 吴鹏, 曹琪. 基于深度学习的多模态融合网民情感识别研究[J]. 信息资源管理学报,2020, 10(1):39-48.
[4] Poria S, Chaturvedi I, Cambria E, et al. Convolutional MKL based multimodal emotion recognition and sentiment analysis[C]// 2016 IEEE 16th International Conference on Data Mining (ICDM). Barcelona, Spain: IEEE, 2016: 439-448.
[5] Cao D L, Ji R R, Lin D Z, et al. A crossmedia public sentiment analysis system for microblog[J]. Multimedia Systems, 2016, 22(4): 479-486.
[6] 缪裕青, 汪俊宏, 刘同来, 等. 图文融合的微博情感分析方法[J]. 计算机工程与设计, 2019, 40(4): 1099-1105.
[7] 凌海彬, 缪裕青, 张万桢, 等. 多特征融合的图文微博情感分析[J]. 计算机应用研究, 2020, 37(7): 1935-1939.
[8] Zhao Z Y, Zhu H Y, Xue Z H, et al. An imagetext consistency driven multimodal sentiment analysis approach for social media[J]. Information Processing & Management, 2019, 56(6): 97-102.
[9] 谢豪,毛进, 李纲. 基于多层语义融合的图文信息情感分类研究[J].数据分析与知识发现,2021,5(6):103-114.
[10] Zadeh A, Chen M H, Poria S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 1103-1114.