[1] 曾夏萍, 梁志清, 庞国萍, 等. 状态反馈脉冲控制的福寿螺-水稻防控数学模型[J]. 四川师范大学学报(自然科学版), 2021, 44(1): 77-87.
[2] 何德材, 吴兴杰, 李伟伟, 等. 对一类具Holling Ⅱ型功能反应的种群脉冲系统的分析[J]. 桂林电子科技大学学报, 2008(1): 54-58.
[3] 杨娟, 傅希林. 基于流转换理论的脉冲微分系统的脉动现象研究[J]. 山东师范大学学报(自然科学版), 2017, 32(1): 1-5
[4] Kaul S K. On impulsive semidynamical systems[J]. Journal of Mathematical Analysis and Applications, 1990, 150(1): 120-128.
[5] Kaul S K. On impulsive semidynamical systems Ⅱ: Recursive properties[J]. Nonlinear Analysis: Theory, Methods & Applications, 1991, 16(7/8): 635-645.
[6] Kaul S K. Stability and asymptotic stability in impulsive semidynamical systems[J]. Journal of Applied Mathematics and Stochastic Analysis, 1994, 7(4): 509-523.
[7] Lakshmikantham V, Liu X Z. On quasi stability for impulsive differential systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 1989, 13(7): 819-828.
[8] Ding C M. Lyapunov quasistable trajectories[J]. Fundamenta Mathematicae, 2013, 220(2): 139-154.
[9] AzizAlaoui M A, Daher Okiye M. Boundedness and global stability for predatorprey model with modified LeslieGower and Hollingtype Ⅱ schemes[J]. Applied Mathematics Letters, 2003, 16(7): 1069-1075.
[10] Ding C M. A predatorprey model with state dependent impulsive effects[J]. Annales Polonici Mathematici, 2014, 111(3): 297-308.
作者简介:葛建国(1965-),男,杭州人,讲师,主要从事应用数学方面的研究
通信作者:潘诗瑶,E-mail:mayspan@163.com