|本期目录/Table of Contents|

[1]裘松良,王婕,丁志栓.完全p-椭圆积分的一些性质[J].浙江理工大学学报,2020,43-44(自科六):852-857.
 QIU Songliang,WANG Jie,DING Zhishuan.Some properties of the complete p-elliptic integrals[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科六):852-857.
点击复制

完全p-椭圆积分的一些性质()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科六期
页码:
852-857
栏目:
出版日期:
2020-11-27

文章信息/Info

Title:
Some properties of the complete p-elliptic integrals
文章编号:
1673-3851 (2020) 11-0852-06
作者:
裘松良王婕丁志栓
浙江理工大学理学院,杭州 310018
Author(s):
QIU Songliang WANG Jie DING Zhishuan
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
完全p-椭圆积分广义三角函数单调性不等式凹凸性
分类号:
O174-6
文献标志码:
A
摘要:
通过研究由完全 p-椭圆积分 p(r)和 p(r) 以及初等函数的适当组合的单调性等性质,揭示了完全 p-椭圆积分的一些性质,并将完全椭圆积分的一些有关单调性和凹凸性的结果推广到完全 p-椭圆积分 p(r)和 p(r)。

参考文献/References:

[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York: Dover, 1966: 556-607.
[2] Takeuchi S. A new form of the generalized complete elliptic integrals[J]. Kodai Mathematical Journal, 2016, 39(1): 202-226.
[3] Lang J, Edmunds D. Trigonometric generalisations[M]//Eigenvalues, Embeddings and Generalized Trigonometric Functions[M]. Berlin: Springer, 2011: 33-48.
[4] Zhang X H. Monotonicity and functional inequalities for the complete pelliptic integrals[J]. Journal of Mathematical Analysis and Applications, 2017, 453(2): 942-953.
[5] Lindqvist P. Note on a nonlinear eigenvalue problem[J]. Rocky Mountain Journal of Mathematics, 1993, 23(1): 281-288.
[6] Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Hlder mean of the complete pelliptic integrals[J]. Journal of Mathematical Analysis and Applications, 2019, 480(2): 123388.
[7] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons, 1997: 48-50.
[8] Huang T R, Tan S Y, Ma X Y, et al. Monotonicity properties and bounds for the complete pelliptic integrals[J]. Journal of Inequalities and Applications, 2018(1): 239-250.
[9] Anderson G D, Qiu S L, Vamanamurthy M K. Elliptic integral inequalities, with applications[J]. Constructive Approximation, 1998, 14(2): 195-207.
[10] Anderson G D, Qiu S L, Vamanamurthy M K, et al, Vuorinen M. Generalized elliptic integrals and modular equations[J]. Pacific Journal of Mathematics, 2000, 192(1): 1-37.
[11] Tu G Y, Qiu S L. Generalized Elliptic Integrals and the Properties of the Solutions of Ramanujan Modular Equations[D]. Hangzhou: Zhejiang SciTech University, 2009: 17-19.
[12] 赵叶华. 广义椭圆积分的一些性质[D]. 杭州: 杭州电子科技大学, 2004: 12-13.
[13] Ma X Y, Qiu S L, Tu G Y. Generalized Grtzsch ring function and generalized elliptic integrals[J]. Applied Mathematics: A Journal of Chinese Universities, 2016, 31(4): 458-468.
[14] Ponnusamy S, Vuorinen M. Asymptotic expansions and inequalities for hypergeometric function[J]. Mathematika, 1997, 44(2): 278-301.

相似文献/References:

[1]钟根红,李林钟,马晓艳.广义三角函数与双曲函数的Wilker-Huygens型不等式[J].浙江理工大学学报,2019,41-42(自科一):118.
 ZHONG Genhong,LI Linzhong,MA Xiaoyan.Wilker Huygens inequalities involving generalized trigonometric function and hyperbolic function[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):118.
[2]钟根红,韦露淑,贺建辉,等.双参数广义三角函数与双曲函数的几个均值不等式[J].浙江理工大学学报,2021,45-46(自科二):242.
 ZHONG Genhonga,WEI Lushub,HE Jianhuia,et al.Several mean inequalities for generalized trigonometric and hyperbolic functions with two parameters[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科六):242.

备注/Memo

备注/Memo:
收稿日期:2020-07-01
Published Online:2020-09-03
基金项目: This research is supported by the NSF ofP. R. China (Grant No. 11771400)
作者简介:QIU Songliang (1957- ),male, Fuyang, Zhejiang, Professor; research interests: quasiconformal theory, special functions, Ramanuian’s modular equations, etc. E-mail: sl_qiu@zstu.edu.cn
更新日期/Last Update: 2020-11-05