[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York: Dover, 1966: 556-607.
[2] Takeuchi S. A new form of the generalized complete elliptic integrals[J]. Kodai Mathematical Journal, 2016, 39(1): 202-226.
[3] Lang J, Edmunds D. Trigonometric generalisations[M]//Eigenvalues, Embeddings and Generalized Trigonometric Functions[M]. Berlin: Springer, 2011: 33-48.
[4] Zhang X H. Monotonicity and functional inequalities for the complete pelliptic integrals[J]. Journal of Mathematical Analysis and Applications, 2017, 453(2): 942-953.
[5] Lindqvist P. Note on a nonlinear eigenvalue problem[J]. Rocky Mountain Journal of Mathematics, 1993, 23(1): 281-288.
[6] Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Hlder mean of the complete pelliptic integrals[J]. Journal of Mathematical Analysis and Applications, 2019, 480(2): 123388.
[7] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons, 1997: 48-50.
[8] Huang T R, Tan S Y, Ma X Y, et al. Monotonicity properties and bounds for the complete pelliptic integrals[J]. Journal of Inequalities and Applications, 2018(1): 239-250.
[9] Anderson G D, Qiu S L, Vamanamurthy M K. Elliptic integral inequalities, with applications[J]. Constructive Approximation, 1998, 14(2): 195-207.
[10] Anderson G D, Qiu S L, Vamanamurthy M K, et al, Vuorinen M. Generalized elliptic integrals and modular equations[J]. Pacific Journal of Mathematics, 2000, 192(1): 1-37.
[11] Tu G Y, Qiu S L. Generalized Elliptic Integrals and the Properties of the Solutions of Ramanujan Modular Equations[D]. Hangzhou: Zhejiang SciTech University, 2009: 17-19.
[12] 赵叶华. 广义椭圆积分的一些性质[D]. 杭州: 杭州电子科技大学, 2004: 12-13.
[13] Ma X Y, Qiu S L, Tu G Y. Generalized Grtzsch ring function and generalized elliptic integrals[J]. Applied Mathematics: A Journal of Chinese Universities, 2016, 31(4): 458-468.
[14] Ponnusamy S, Vuorinen M. Asymptotic expansions and inequalities for hypergeometric function[J]. Mathematika, 1997, 44(2): 278-301.
[1]钟根红,李林钟,马晓艳.广义三角函数与双曲函数的Wilker-Huygens型不等式[J].浙江理工大学学报,2019,41-42(自科一):118.
ZHONG Genhong,LI Linzhong,MA Xiaoyan.Wilker Huygens inequalities involving generalized trigonometric function and hyperbolic function[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):118.
[2]钟根红,韦露淑,贺建辉,等.双参数广义三角函数与双曲函数的几个均值不等式[J].浙江理工大学学报,2021,45-46(自科二):242.
ZHONG Genhonga,WEI Lushub,HE Jianhuia,et al.Several mean inequalities for generalized trigonometric and hyperbolic functions with two parameters[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科六):242.