[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep Convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2012: 1097-1105.
[2] Salkuti S R. Shortterm electrical load forecasting using radial basis function neural networks considering weather factors[J]. Electrical Engineering, 2018, 100(3): 1985-1995.
[3] Werbos P J. Generalization of Backpropagation with application to a recurrent gas market model[J]. Neural Networks, 1988, 1(4):339-356.
[4] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:97-117.
[5] Schmidt W F, Kraaijveld M A, Duin R P W. Feedforward neural networks with random weights[C]//11th IAPR International Conference on Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 1992:1-4.
[6] Li M, Wang D H. Insights into randomized algorithms for neural networks: Practical issues and common pitfalls[J]. Information Sciences, 2017, 382/383:170-178.
[7] Wang D H, Li M. Stochastic Configuration Networks: fundamentals and algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(10):3466-3479.
[8] Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functionallink net[J]. IEEE Transactions on Neural Networks, 1995, 6(6):1320-1329.
[9] Tyukin I Y, Prokhorov D V. Feasibility of random basis function approximators for modeling and control[C]//2009 IEEE International Conference on Control Applications. IEEE, 2009:1391-1396.
[10] Ye H L, Cao F L, Wang D H, et al. Building feedforward neural networks with random weights for large scale datasets[J]. Expert Systems with Applications, 2018, 106:233-243.
[1]陈巧红,余仕敏,贾宇波.广告点击率预估技术综述[J].浙江理工大学学报,2015,33-34(自科6):851.
CHEN Qiao hong,YU Shi min,JIA Yu bo.Overview of Advertisement Clickthrough Rate Estimating Techniques[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科六):851.
[2]杨怡然,吴巧英.智能化服装搭配推荐研究进展[J].浙江理工大学学报,2021,45-46(自科一):1.
YANG Yiran,WU Qiaoying.Research progress of intelligent clothing matching recommendation[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科六):1.
[3]王涛,张恩政,刘翠苹,等.基于改进神经网络的机器人逆解与轨迹精度提高方法[J].浙江理工大学学报,2021,45-46(自科五):624.
WANG Tao,ZHANG Enzheng,LIU Cuiping,et al.Inverse solution and trajectory accuracy improvement method of robot based on improved neural network[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科六):624.
[4]廖龙杰,吕文涛,叶冬,等.基于深度学习的小目标检测算法研究进展[J].浙江理工大学学报,2023,49-50(自科三):331.
LIAO Longjie,L Wentao,YE Dong,et al.Research progress of small target detection based on deep learning[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科六):331.
[5]胡显耀,靳聪明.基于扩散常微分方程的医学图像异常检测[J].浙江理工大学学报,2024,51-52(自科六):851.
HU Xianyao,JIN Congming.Medical image anomaly detection based on diffusion ordinary differential equations[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):851.