|本期目录/Table of Contents|

[1]王媛媛,裴道武.广义摄动度及BKS推理方法的鲁棒性[J].浙江理工大学学报,2019,41-42(自科二):255-261.
 WANG Yuanyuan,PEI Daowu.Generalized perturbation degree and robustness of BKS reasoning method[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):255-261.
点击复制

广义摄动度及BKS推理方法的鲁棒性()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第41-42卷
期数:
2019年自科二期
页码:
255-261
栏目:
出版日期:
2019-04-23

文章信息/Info

Title:
Generalized perturbation degree and robustness of BKS reasoning method
文章编号:
1673-3851 (2019) 03-0255-07
作者:
王媛媛裴道武
浙江理工大学理学院,杭州 310018
Author(s):
WANG Yuanyuan PEI Daowu
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
模糊逻辑模糊推理摄动度广义摄动度BKS推理方法鲁棒性
分类号:
0159
文献标志码:
A
摘要:
针对用于研究模糊推理鲁棒性的模糊集摄动程度概念不统一的状况,提出了广义摄动度的概念,使文献中出现的多个概念成为新概念的特殊情形。基于提出的广义摄动度概念,系统研究了一些常用蕴涵和模糊连接词的摄动程度,给出了常用蕴涵和模糊连接词的广义摄动度,并且得到基于五个模糊蕴涵的BandlerKohout Subproduct(BKS)推理方法的鲁棒性结果。

参考文献/References:

[1] Pappis C P. Value approximation of fuzzy systems variables[J]. Fuzzy Sets and Systems, 1991, 39(1): 111-115.
[2] Ying M S. Perturbation of fuzzy reasoning [J]. IEEE Transactions on Fuzzy Systems, 1999, 7(5): 625-629.
[3] Hong D H, Hwang S Y. A note on the value similarity of fuzzy systems variables[J]. Fuzzy Sets and Systems, 1994, 66(3): 383-386.
[4] Dai S S, Pei D W, Wang S M. Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances[J]. Fuzzy Sets and Systems, 2011, 189(1): 63-73.
[5] Montes S, Couso I, Gil P, et al. Divergence measures between fuzzy sets[J]. International Journal of Approximate Reasoning, 2002, 30(2): 91-105.
[6] Wang G J, Duan J Y. On robustness of the full implication triple I inference method with respect to finer measurements[J]. International Journal of Approximate Reasoning, 2014, 55(3): 787-796.
[7] 王国俊,段景瑶.适宜于展开模糊推理的两类模糊度量空间[J].中国科学:信息科学,2014,44(5):623-632.
[8] Li Y F, Qin K Y, He X, et al. Robustness of fuzzy connectives and fuzzy reasoning with respect to general divergence measures[J]. Fuzzy Sets and Systems, 2016, 294: 63-78.
[9] 裴道武.基于三角模的模糊逻辑理论及其应用[M].北京:科学出版社,2013:7-15.

相似文献/References:

[1]李龙,裴道武. 基于泛三I算法的模糊系统响应能力分析[J].浙江理工大学学报,2013,30(01):59.
 LI Long,PEI Dao wu. Response Ability of Fuzzy Systems Based on theUniversal Triple I Methods[J].Journal of Zhejiang Sci-Tech University,2013,30(自科二):59.
[2]张乐,裴道武. 几个模糊命题逻辑紧致性的新证明[J].浙江理工大学学报,2012,29(01):143.
 ZHANG Le,PEI Dao\|wu. A New Proof of Compactness of Several Fuzzy Proposition Logics[J].Journal of Zhejiang Sci-Tech University,2012,29(自科二):143.
[3]张爱英,裴道武.基于贴近度的疾病诊断模糊专家系统[J].浙江理工大学学报,2014,31-32(自科2):206.
 ZHANG Ai ying,PEI Dao wu.Disease Diagnosis Fuzzy Expert System Based on Close Degree[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科二):206.
[4]李芳,裴道武.多重模糊蕴涵关于三角模的分配性[J].浙江理工大学学报,2017,37-38(自科1):99.
 LI Fang,PEI Daowu.Distributivity of Multiple Fuzzy Implications about Triangle Module[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科二):99.
[5]王龙,裴道武.加权差异测度与模糊推理的鲁棒性分析[J].浙江理工大学学报,2018,39-40(自科1):120.
 WANG Long,PEI Daowu.Weighted difference measure and robustness analysis of fuzzy reasoning[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科二):120.
[6]王兰婷,裴道武.基于相似度的一般全蕴涵推理方法[J].浙江理工大学学报,2019,41-42(自科一):113.
 WONG Lanting,PEI Daowu.General full implication fuzzy reasoning method based on similarity[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科二):113.

备注/Memo

备注/Memo:
收稿日期: 2018-07-15
网络出版日期: 2018-11-16
基金项目: 国家自然科学基金项目(11171308,61379018,61472471)
作者简介: 王媛媛(1992-),女,河南驻马店人,硕士研究生,主要从事模糊数学方面的研究
通信作者: 裴道武,E-mail:peidw@163.com
更新日期/Last Update: 2019-03-19