[1] 刘华文.基于三角模的模糊逻辑理论及其应用[M].北京:科学出版社,2013:1-167.
[2] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社,2008:69-116.
[3] 刘华文.关于模糊逻辑与模糊推理逻辑基础问题的十年研究综述[J].工程数学学报,2004,21(2):249-258.
[4] Wang G J. On the logic foundation of fuzzy reasoning[J]. Information Sciences,1999,177(1):47-88.
[5] Pei D W. Unified full implication algorithms of fuzzy reasoning[J]. Information Sciences,2008,178(2):520-530.
[6] Tang Y M, Yang X Z. Symmetric implicational method of fuzzy reasoning[J]. International Journal of Approximate Reasoning,2013,54(8):1034-1048.
[7] Zhou B K, Xu G, Li S. The quintuple implication principle of fuzzy reasoning[J]. Information Sciences,2015,297(10):202-215.
[8] 王国俊,刘华文,宋建社.三I方法综述[J].模糊系统与数学,2006,20(6):1-14.
[9] Tursken I B, Zhao Z. An approximate analogical reasoning approach based on similarity measures[J]. IEEE Transactions Systems Man and Cybernetics,1988,18(6):1049-1056.
[10] Wang D G, Meng Y P. A fuzzy similarity inference method for fuzzy reasoning[J]. Computers and Mathematics with Applications,2008,56(10):2445-2454.
[1]李龙,裴道武. 基于泛三I算法的模糊系统响应能力分析[J].浙江理工大学学报,2013,30(01):59.
LI Long,PEI Dao wu. Response Ability of Fuzzy Systems Based on theUniversal Triple I Methods[J].Journal of Zhejiang Sci-Tech University,2013,30(自科一):59.
[2]张乐,裴道武. 几个模糊命题逻辑紧致性的新证明[J].浙江理工大学学报,2012,29(01):143.
ZHANG Le,PEI Dao\|wu. A New Proof of Compactness of Several Fuzzy Proposition Logics[J].Journal of Zhejiang Sci-Tech University,2012,29(自科一):143.
[3]张爱英,裴道武.基于贴近度的疾病诊断模糊专家系统[J].浙江理工大学学报,2014,31-32(自科2):206.
ZHANG Ai ying,PEI Dao wu.Disease Diagnosis Fuzzy Expert System Based on Close Degree[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科一):206.
[4]李芳,裴道武.多重模糊蕴涵关于三角模的分配性[J].浙江理工大学学报,2017,37-38(自科1):99.
LI Fang,PEI Daowu.Distributivity of Multiple Fuzzy Implications about Triangle Module[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科一):99.
[5]王龙,裴道武.加权差异测度与模糊推理的鲁棒性分析[J].浙江理工大学学报,2018,39-40(自科1):120.
WANG Long,PEI Daowu.Weighted difference measure and robustness analysis of fuzzy reasoning[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科一):120.
[6]王媛媛,裴道武.广义摄动度及BKS推理方法的鲁棒性[J].浙江理工大学学报,2019,41-42(自科二):255.
WANG Yuanyuan,PEI Daowu.Generalized perturbation degree and robustness of BKS reasoning method[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科一):255.