|本期目录/Table of Contents|

[1]葛耿韬,裘松良,焦仁兵.第一类完全椭圆积分之商的一个双向不等式[J].浙江理工大学学报,2018,39-40(自科6):770-775.
 GE Gengtao,QIU Songliang,JIAO Renbing.A double inequality for the ratio of complete elliptic integrals of the first kind[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):770-775.
点击复制

第一类完全椭圆积分之商的一个双向不等式()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第39-40卷
期数:
2018年自科6期
页码:
770-775
栏目:
出版日期:
2018-11-10

文章信息/Info

Title:
A double inequality for the ratio of complete elliptic integrals of the first kind
文章编号:
1673-3851 (2018) 11-0770-06
作者:
葛耿韬裘松良焦仁兵
浙江理工大学理学院,杭州 310018
Author(s):
GE Gengtao QIU Songliang JIAO Renbing
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
完全椭圆积分单调性上下界不等式
分类号:
O174.6
文献标志码:
A
摘要:
建立了第一类完全椭圆积分的商K( r )/K(r)所满足的一个双向不等式。该不等式给出的上界小于至今已知的所有上界,而下界的证明则简化了最近由Alzer和Richards给出的证明。

参考文献/References:

[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables[M]. New York: Dover,1965.
[2] Andrews G, Askey R, Roy R. Special Functions, Encyclopedia of Mathematics and Its Applications[M]. Cambridge: Cambridge University Press,1999:132-143.
[3] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997:48-73.
[4] Carlson B C. Special Functions of Applied Mathematics[M]. New York: Academic Press,1977:257-287.
[5] Anderson G D, Vamanamurthy M K, Vuorinen M. Functional inequalities for hypergeometric functions and complete elliptic integrals[J]. SIAM Journal on Mathematical Analysis,1992,23(2):512-524.
[6] Qiu S L, Vamanamurthy M K. Sharp estimates for complete elliptic integrals[J]. SIAM Journal on Mathematical Analysis,1996,27(3):823-834.
[7] Alzer H, Richards K. Inequalities for the ratio of complete elliptic integrals[J]. Proceedings of the American Mathematical Society,2017,145(4):1661-1670.
[8] Qiu S L,  Vamanamurthy M K, Vuorinen M. Some inequalities for the growth of elliptic integrals[J]. SIAM Journal on Mathematical Analysis,1998,29(5):1224-1237.
[9] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals [J]. Journal of Computational and Applied Mathematics,2004,172(2):289-312.
[10] Chu Y M, Qiu S L, Wang M K. Sharp inequalities involving the power mean and complete elliptic integral of the first kind[J]. Rocky Mountain Journal of Mathematics,2013,43(5):1489-1496.

相似文献/References:

[1]裘松良,李晴晴,王晓宇.Ramanujan常数与Beta函数的比较[J].浙江理工大学学报,2017,37-38(自科1):110.
 QIU Songliang,LI Qingqing,WANG Xiaoyu.Comparisons Between the Ramanujan Constant and Beta Function[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科6):110.
[2]焦仁兵,裘松良,葛耿韬.广义( p,q )椭圆积分的单调性和凹凸性[J].浙江理工大学学报,2018,39-40(自科6):765.
 JIAO Renbing,QIU Songliang,GE Gengtao.Monotonicity and convexity properties of  the generalized ( p,q )elliptic integrals[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科6):765.
[3]马晗茜,裘松良,鲍琪.零平衡超几何函数的几个性质[J].浙江理工大学学报,2019,41-42(自科六):823.
 MA Hanxi,QIU Songliang,BAO Qi.Some properties of zerobalanced hypergeometric functions[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科6):823.
[4]裘松良,鲍琪,马晗茜.Hübner函数的一个极值问题的解[J].浙江理工大学学报,2020,43-44(自科三):362.
 QIU Songliang,BAO Qi,MA Hanxi.Solution of an extremal problem on the Hübner function[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科6):362.
[5]裘松良,丁志栓,王婕.(p,q)-Grotzsch环函数与(p,q)-Hübner函数的一些性质[J].浙江理工大学学报,2020,43-44(自科六):846.
 QIU Songliang,DING Zhishuan,WANG Jie.Some properties of the  (p,q) Grtzsch ring  function and  (p,q) Hübner function[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科6):846.
[6]裘松良,王婕,丁志栓.完全p-椭圆积分的一些性质[J].浙江理工大学学报,2020,43-44(自科六):852.
 QIU Songliang,WANG Jie,DING Zhishuan.Some properties of the complete p-elliptic integrals[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科6):852.
[7]林杰,张孝惠.广义Grotzsch函数的一些函数不等式[J].浙江理工大学学报,2022,47-48(自科四):579.
 LIN Jie,ZHANG Xiaohui.Some functional inequalities for the generalized Grotzsch function[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科6):579.
[8]杜培培,王根娣.Gamma函数的单调性与凹凸性[J].浙江理工大学学报,2022,47-48(自科四):608.
 DU Peipei,WANG Gendi.Monotonicity and convexity properties for the gamma function[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科6):608.
[9]邢志霞,张孝惠.Toader型平均关于其他二元平均的逼近[J].浙江理工大学学报,2022,47-48(自科四):588.
 XING Zhixia,ZHANG Xiaohui.On approximation the Toader type mean by other bivariate means[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科6):588.

备注/Memo

备注/Memo:
Received date: 2018-06-01
Published Online: 2018-09-04
Fund item: The research is supported by NSF of P. R. China (Grant No. 11771400)
Introdu ction of the first anothor: GE Gengtao(1988-), male, Taizhou, master candidate, research interests: special functions.
Corresponding author: QIU Songliang, E-mail: sl_qiu@zstu.edu.cn
更新日期/Last Update: 2018-11-14