|本期目录/Table of Contents|

[1]裘松良,李晴晴,王晓宇.Ramanujan常数与Beta函数的比较[J].浙江理工大学学报,2017,37-38(自科1):110-115.
 QIU Songliang,LI Qingqing,WANG Xiaoyu.Comparisons Between the Ramanujan Constant and Beta Function[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科1):110-115.
点击复制

Ramanujan常数与Beta函数的比较()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第37-38卷
期数:
2017年自科1期
页码:
110-115
栏目:
出版日期:
2017-01-10

文章信息/Info

Title:
Comparisons Between the Ramanujan Constant and Beta Function
文章编号:
1673-3851 (2017) 01-0110-06
作者:
裘松良李晴晴王晓宇
浙江理工大学理学院,杭州 310018
Author(s):
QIU Songliang LI Qingqing WANG Xiaoyu
School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
Ramanujan常数psi和beta函数单调性凹凸性上下界
分类号:
O156.4
文献标志码:
A
摘要:
给出了由Ramanujan 常数R(a)=-2γ-ψ(a)-ψ(1-a)和Beta函数B(a,1-a)=π/sin(πa)定义的一些组合的单调性与凹凸性,获得了R(a)-B(a,1-a)的一些渐近精确的上下界,从而深入揭示了函数R(a)与B(a,1-a)的大小关系,并改进了R(a)的一些已知的相关结论。

参考文献/References:

[1]ABRAMOWITZ M, STEGUN I A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[M]. New York, Dover,1965:253-294.
[2]QIU S L, VUORINEN M. Handbook of Complex Analysis:Special Function in Geometric Function Theory[M]. Elsevier B V,2005:621-659.
[3]ANDERSON G D, VAMANAMURTHY M K, VUORINEN M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York, John Wiley & Sons,1997:32-47.
[4]QIU S L, VUORINEN M. Some properties of the gamma and psi functions with applications [J]. Math of Comput,2005,74:723-742.
[5]ANDERSON G D, BARNARD R W, RICHARDS K C, et al. Inequalities for zerobalanced hypergeometric functions[J]. Trans Amer Math Soc,1995,347:1713-1723.
[6]BALASUBRAMANIAN R, PONNUSAMY S, VUORINEN M. Functional inequalities for quotients of hypergeometric functions[J]. J Math Anal Appl,1998,218:256-268.
[7]PONNUSAMY S, VUORINEN M. Asymptotic expansions and inequalities for hypergeometric function[J]. Mathematika,1997,44:278-301.
[8]QIU S L, VUORINEN M. Infinite products and the normalized quotients of hypergeometric function[J]. SIAM J Math Anal,1999,30:1057-1075.
[9]QIU S L. Singular values, quasiconformal maps and the Schottky upper bound[J]. Science in China (Ser. A),1998,41(12):1241-1247.
[10]QIU S L. Grtzsch ring and Ramanujans modular equations[J]. Acta Math Sinica,2000,43(2):283-290.
[11]WANG M K, CHU Y M, QIU S L.Sharp bounds for generalized elliptic integrals of the first kind[J]. J Math Anal Appl,2015,429:744-757.
[12]QIU S L, FENG B P. Some properties of the Ramanujan constant[J]. J of Hangzhou Dianzi Univ,2007,27(3):88-91.
[13]ZHOU P G, QIU S L, TU G Y, et al. Some properties of the Ramanujan constant[J]. J of Zhejiang Sci-Tech Univ,2010,27(5):835-841.

相似文献/References:

[1]裘松良,王晓宇,李晴晴.Ramanujan常数的级数展开与上下界[J].浙江理工大学学报,2017,37-38(自科1):104.
 QIU Songliang,WANG Xiaoyu,LI Qingqing.Series Expansions and Bounds of the Ramanujan Constant[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科1):104.

备注/Memo

备注/Memo:
Received date: 2016-04-24
Published Online: 2016-12-09
Fund item: This research is supported by the National Natural Science Foundation of China (NSFC) (1171307)
Introdu ction of the first anthor: QIU Songliang (1957-), male, Fuyang, professor, research interests: complex analysis, quasiconformal theoery, special functions, Ramanujans moduar equations.
更新日期/Last Update: 2017-03-01