[1] ZHANG F X, LIU H W. On a new class of implication:(g, u)implications and the distributive equations [J]. International Journal of Approximate Reasoning,2013,54(8):1049-1065.
[2] KLEMENT E P, MESIAR R, PAP E. Triangular Norms [M]. Dordrecht:Kluwer,2000:1-13.
[3] BACZYNSKI M, JAYARAM B. Fuzzy Implications [M]. Heidelberg:Springer,2008:1-25.
[4] VEMURI N R. Mutually exchangeable fuzzy implications [J]. Information Sciences,2015,317(C):1-24.
[5] VEMURI N R, JAYARAM B. The ○composition of fuzzy implications:Closures with respect to properties, powers and families [J]. Fuzzy Set and Systems,2015,275:58-87.
[6] 裴道武.模糊推理的基本理论[J].高校应用数学学报,2012,27(3):340-350.
[7] 裴道武.基于三角模的模糊逻辑理论及其应用[M].科学出版社,2013:220-330.
[1]张乐,裴道武. 几个模糊命题逻辑紧致性的新证明[J].浙江理工大学学报,2012,29(01):143.
ZHANG Le,PEI Dao\|wu. A New Proof of Compactness of Several Fuzzy Proposition Logics[J].Journal of Zhejiang Sci-Tech University,2012,29(自科1):143.
[2]王兰婷,裴道武.基于相似度的一般全蕴涵推理方法[J].浙江理工大学学报,2019,41-42(自科一):113.
WONG Lanting,PEI Daowu.General full implication fuzzy reasoning method based on similarity[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科1):113.
[3]王媛媛,裴道武.广义摄动度及BKS推理方法的鲁棒性[J].浙江理工大学学报,2019,41-42(自科二):255.
WANG Yuanyuan,PEI Daowu.Generalized perturbation degree and robustness of BKS reasoning method[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科1):255.