|本期目录/Table of Contents|

[1]吴彤彤,孙辰,曹卫星.纳米 Fe2O3 及接种比对餐厨垃圾厌氧消化性能与微生物群落结构的影响机制[J].浙江理工大学学报,2026,55-56(自科一):66-74.
 WU Tongtong,SUN Chen,CAO Weixing.The influence mechanism of nano-Fe2O3 and inoculum to substrate ratios on the anaerobic digestion performance and microbial community structure of food waste[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):66-74.
点击复制

纳米 Fe2O3 及接种比对餐厨垃圾厌氧消化性能与微生物群落结构的影响机制()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
55-56
期数:
2026年自科第一期
页码:
66-74
栏目:
出版日期:
2026-01-10

文章信息/Info

Title:
The influence mechanism of nano-Fe2O3 and inoculum to substrate ratios on the anaerobic digestion performance and microbial community structure of food waste
文章编号:
1673-3851(2026) 01-0066-09
作者:
吴彤彤 孙辰 曹卫星
1. 浙江理工大学生命科学与医药学院 ,杭州 310018;2. 嘉兴大学生物与化学工程学院 ,浙江嘉兴 314001
Author(s):
WU Tongtong SUN Chen CAO Weixing
1. College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
关键词:
餐厨垃圾纳米三氧化二铁厌氧消化接种比微生物群落结构
分类号:
X799.3
文献标志码:
A
摘要:
为探索纳米三氧化二铁(Fe2O3 NPs) 和接种比(Inoculum to substrateratio, ISR) 对餐厨垃圾厌氧消化性能和微生物群落结构特性的影响机制 ,在 ISR为 1∶2、1∶1和2∶1条件下 ,分别添加质量浓度 1.0g/LFe2O3 NPs,开展中温批次厌氧消化产沼气实验 。结果表明 :不同 ISR条件下 Fe2O3 NPs对餐厨垃圾产气性能的影响差异显著 ,且不同程度地缓解了挥发性脂肪酸和氨氮的累积问题 , 当 ISR为 1∶2时 ,添加 Fe2O3 NPs显著提升了累积比甲烷产量 ,较对照组提高了 8.5%;ISR为 1∶1时 ,添加 Fe2O3 NPs对产气性能无显著影响;ISR为 2∶1时 ,添加 Fe2O3 NPs抑制产气 。微生物群落结构中 ,Firmicutes、Bacteroidota和 Synergistota是优势细菌门 ,Methanosaeta、Methanosarcina和Methanobacterium 是优势产甲烷古菌属 , 当 ISR为 1∶2时 ,Fe2O3 NPs显著提高了 Bacteroidota和Methanosarcina的相对丰度;ISR为 1∶1时 ,Fe2O3 NPs仅显著提高了 Methanosarcina的相对丰度;ISR为 2∶1时 ,Fe2O3 NPs则显著降低了Methanosaeta和Methanobacterium的相对丰度 。该文为了解 Fe2O3 NPs及接种比对餐厨垃圾厌氧消化特性的影响提供试验支撑 ,进而为沼气工程的规模化应用和稳定运行提供理论参考。

参考文献/References:

[1] 唐周利, 李蕾, 叶文杰, 等. 温度对厨余垃圾厌氧消化系统启动及性能的影响[J]. 环境科学学报, 2024, 44(7): 281-292.
[2] Yin Q D, He K, Echigo S, et al. Ferroferric oxide significantly affected production of soluble microbial products and extracellular polymeric substances in anaerobic methanogenesis reactors[J]. Frontiers in Microbiology, 2018, 9: 2376.
[3] Singh D, Malik K, Sindhu M, et al. Biostimulation of anaerobic digestion using iron oxide nanoparticles (IONPs) for increasing biogas production from cattle manure[J]. Nanomaterials, 2022, 12(3): 497.
[4] Wu J K, Zhu G C, Yu R. Fates and impacts of nanomaterial contaminants in biological wastewater treatment system: A review[J]. Water, Air, & Soil Pollution, 2017, 229(1): 9.
[5] Lu T D, Zhang J Y, Wei Y S, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 287: 121393.
[6] Al-Iraqi A R, Gandhi B P, Folkard A M, et al. Influence of inoculum to substrate ratio and substrates mixing ratio on biogas production from the anaerobic co-digestion of phragmites australis and food waste[J]. BioEnergy Research, 2024, 17(2): 1277-1287.
[7] Li Y Y, Wang Y Q, Yu Z H, et al. Effect of inoculum and substrate/inoculum ratio on the performance and methanogenic archaeal community structure in solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover[J]. Waste Management, 2018, 81: 117-127.
[8] 周丽丽, 杨帆, 罗瑞芬, 等. 氧化铁对不同有机负荷下餐厨垃圾厌氧消化产气的影响[J]. 环境工程学报, 2017, 11(7): 4258-4264.
[9] 吴明, 杨振虎, 吴开丽, 等. Fe2O3提高高浓造纸污水厌氧颗粒污泥产甲烷性能的机理研究[J]. 天津造纸, 2021, 43(3): 21-28.
[10] 曾心雨, 赵欢, 李玉成, 等. Fe2O3对猪粪厌氧发酵及沼渣中Cu、As的钝化效果[J]. 江苏农业科学, 2020, 48(6): 260-264.
[11] Xiao Y H, Zan F X, Zhang W L, et al. Alleviating nutrient imbalance of low carbon-to-nitrogen ratio food waste in anaerobic digestion by controlling the inoculum-to-substrate ratio[J]. Bioresource Technology, 2022, 346: 126342.
[12] Orhorhoro E K. Experimental determination of effect of total solid (TS) and volatile solid (VS) on biogas yield[J]. American Journal of Modern Energy, 2017, 3(6): 131-135.
[13] Sun C, Xie Y, Hou F, et al. Enhancement on methane production and anaerobic digestion stability via co-digestion of microwave-Ca(OH)2 pretreated sugarcane rind slurry and kitchen waste[J]. Journal of Cleaner Production, 2020, 264: 121731.
[14] Banks C J, Zhang Y, Jiang Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
[15] Sun C, Cao W X, Banks C J, et al. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion[J]. Bioresource Technology, 2016, 218: 1215-1223.
[16] 熊荣波, 柳丽, 孟艳, 等. 含固率和接种比对菜籽饼中温厌氧消化特性的影响[J]. 环境科学研究, 2022, 35(1): 230-237.
[17] Zhang F X, Qin Y, Zhao C X, et al. Soft magnetic ferrite for enhanced anaerobic digestion of food waste: Effects on methane production and magnetic recovery[J]. Bioresource Technology, 2023, 387: 129601.
[18] Baek G, Kim J, Lee C. A review of the effects of iron compounds on methanogenesis in anaerobic environments[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109282.
[19] Wang P L, Li X N, Li Y, et al. Enhanced anaerobic digestion performance of food waste by zero-valent iron and iron oxides nanoparticles: Comparative analyses of microbial community and metabolism[J]. Bioresource Technology, 2023, 371: 128633.
[20] Lu T D, Su T M, Liang X L, et al. Dual character of methane production improvement and antibiotic resistance genes reduction by nano-Fe2O3 addition during anaerobic digestion of swine manure[J]. Journal of Cleaner Production, 2022, 376: 134240.
[21] Zhang R, Zhang M, Mou H Q, et al. Comparation of mesophilic and thermophilic anaerobic co-digestion of food waste and waste activated sludge driven by biochar derived from kitchen waste[J]. Journal of Cleaner Production, 2023, 408: 137123.
[22] Abdelsalam E, Samer M, Attia Y A, et al. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure[J]. Energy, 2017, 120: 842-853.
[23] 王媛媛, 郑世超, 黄文力, 等. 零价铁与磁铁矿促进半干式猪粪厌氧产甲烷的效能与机理研究[J]. 环境科学学报, 2022, 42(12): 215-223.
[24] 王辉辉, 王雪梅, 李子富, 等. 高固体条件下黑水添加对厨余垃圾厌氧发酵的影响[J]. 环境工程学报, 2024, 18(1): 237-244.
[25] 祝佳欣, 朱雯喆, 徐俊, 等. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019.
[26] Tian H L, Fotidis I A, Mancini E, et al. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics[J]. Bioresource Technology, 2018, 247: 616-623.
[27] James A, Li M, Mazarji M, et al. Coupling electron bifurcation and interspecies electron transfer to mitigate ammonia and acids inhibition[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115166.
[28] Vihodceva S, Šutka A, Sihtmäe M, et al. Antibacterial activity of positively and negatively charged hematite (α-Fe2O3) nanoparticles to escherichia coli, staphylococcus aureus and vibrio fischeri[J]. Nanomaterials, 2021, 11(3): 652.
[29] Hassanpourmoghadam L, Aminzadeh Goharrizi B, Torabian A, et al. Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge[J]. Biomass and Bioenergy, 2023, 169: 106692.
[30] Zhang Z H, Gao P, Cheng J Q, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63.
[31] 潘婧冉, 高苏, 赵国柱, 等. 餐厨垃圾厌氧消化处理主要过程的微生物群落结构分析[J]. 微生物学通报, 2019, 46(11): 2886-2899.
[32] Ao T J, Xie Z J, Zhou P, et al. Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste[J]. Bioprocess and Biosystems Engineering, 2021, 44(6): 1201-1214.
[33] Zhang H, Yuan W D, Dong Q, et al. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress[J]. Water Research, 2022, 213: 118152.
[34] 张虹, 李蕾, 彭韵, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J]. 中国环境科学, 2020, 40(8): 3465-3474.
[35] Mu H, Zhao C H, Zhao Y X, et al. Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste: Performance and microbial characteristics analysis[J]. Bioresource Technology, 2017, 236: 68-76.
[36] Ma K L, Wang W, Liu Y Q, et al. Insight into the performance and microbial community profiles of magnetite-amended anaerobic digestion: Varying promotion effects at increased loads[J]. Bioresource Technology, 2021, 329: 124928.

相似文献/References:

[1]郑智胜,苏小琴,胡秀芳.餐厨垃圾堆肥降解菌株的筛选、鉴定及菌剂研制[J].浙江理工大学学报,2026,55-56(自科一):75.
 ZHENG Zhisheng,SU Xiaoqin,HU Xiufang.Screening and identification of degrading strains and development of a microbial inoculant for food waste composting[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):75.

备注/Memo

备注/Memo:
基金项目 : 嘉兴市科技局项目(2023AY11054,2024AY10057)收稿日期 : 2025-06-09 网络出版日期 : 2025-07-21
作者简介 : 吴彤彤(1999 ) ,女 ,浙江温州人 ,硕士研究生 ,主要从事固体废弃物处理与处置的研究。通信作者 : 曹卫星 ,E-mail:wxcao@163. com
更新日期/Last Update: 2026-01-08