[1] 唐周利, 李蕾, 叶文杰, 等. 温度对厨余垃圾厌氧消化系统启动及性能的影响[J]. 环境科学学报, 2024, 44(7): 281-292.
[2] Yin Q D, He K, Echigo S, et al. Ferroferric oxide significantly affected production of soluble microbial products and extracellular polymeric substances in anaerobic methanogenesis reactors[J]. Frontiers in Microbiology, 2018, 9: 2376.
[3] Singh D, Malik K, Sindhu M, et al. Biostimulation of anaerobic digestion using iron oxide nanoparticles (IONPs) for increasing biogas production from cattle manure[J]. Nanomaterials, 2022, 12(3): 497.
[4] Wu J K, Zhu G C, Yu R. Fates and impacts of nanomaterial contaminants in biological wastewater treatment system: A review[J]. Water, Air, & Soil Pollution, 2017, 229(1): 9.
[5] Lu T D, Zhang J Y, Wei Y S, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 287: 121393.
[6] Al-Iraqi A R, Gandhi B P, Folkard A M, et al. Influence of inoculum to substrate ratio and substrates mixing ratio on biogas production from the anaerobic co-digestion of phragmites australis and food waste[J]. BioEnergy Research, 2024, 17(2): 1277-1287.
[7] Li Y Y, Wang Y Q, Yu Z H, et al. Effect of inoculum and substrate/inoculum ratio on the performance and methanogenic archaeal community structure in solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover[J]. Waste Management, 2018, 81: 117-127.
[8] 周丽丽, 杨帆, 罗瑞芬, 等. 氧化铁对不同有机负荷下餐厨垃圾厌氧消化产气的影响[J]. 环境工程学报, 2017, 11(7): 4258-4264.
[9] 吴明, 杨振虎, 吴开丽, 等. Fe2O3提高高浓造纸污水厌氧颗粒污泥产甲烷性能的机理研究[J]. 天津造纸, 2021, 43(3): 21-28.
[10] 曾心雨, 赵欢, 李玉成, 等. Fe2O3对猪粪厌氧发酵及沼渣中Cu、As的钝化效果[J]. 江苏农业科学, 2020, 48(6): 260-264.
[11] Xiao Y H, Zan F X, Zhang W L, et al. Alleviating nutrient imbalance of low carbon-to-nitrogen ratio food waste in anaerobic digestion by controlling the inoculum-to-substrate ratio[J]. Bioresource Technology, 2022, 346: 126342.
[12] Orhorhoro E K. Experimental determination of effect of total solid (TS) and volatile solid (VS) on biogas yield[J]. American Journal of Modern Energy, 2017, 3(6): 131-135.
[13] Sun C, Xie Y, Hou F, et al. Enhancement on methane production and anaerobic digestion stability via co-digestion of microwave-Ca(OH)2 pretreated sugarcane rind slurry and kitchen waste[J]. Journal of Cleaner Production, 2020, 264: 121731.
[14] Banks C J, Zhang Y, Jiang Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
[15] Sun C, Cao W X, Banks C J, et al. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion[J]. Bioresource Technology, 2016, 218: 1215-1223.
[16] 熊荣波, 柳丽, 孟艳, 等. 含固率和接种比对菜籽饼中温厌氧消化特性的影响[J]. 环境科学研究, 2022, 35(1): 230-237.
[17] Zhang F X, Qin Y, Zhao C X, et al. Soft magnetic ferrite for enhanced anaerobic digestion of food waste: Effects on methane production and magnetic recovery[J]. Bioresource Technology, 2023, 387: 129601.
[18] Baek G, Kim J, Lee C. A review of the effects of iron compounds on methanogenesis in anaerobic environments[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109282.
[19] Wang P L, Li X N, Li Y, et al. Enhanced anaerobic digestion performance of food waste by zero-valent iron and iron oxides nanoparticles: Comparative analyses of microbial community and metabolism[J]. Bioresource Technology, 2023, 371: 128633.
[20] Lu T D, Su T M, Liang X L, et al. Dual character of methane production improvement and antibiotic resistance genes reduction by nano-Fe2O3 addition during anaerobic digestion of swine manure[J]. Journal of Cleaner Production, 2022, 376: 134240.
[21] Zhang R, Zhang M, Mou H Q, et al. Comparation of mesophilic and thermophilic anaerobic co-digestion of food waste and waste activated sludge driven by biochar derived from kitchen waste[J]. Journal of Cleaner Production, 2023, 408: 137123.
[22] Abdelsalam E, Samer M, Attia Y A, et al. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure[J]. Energy, 2017, 120: 842-853.
[23] 王媛媛, 郑世超, 黄文力, 等. 零价铁与磁铁矿促进半干式猪粪厌氧产甲烷的效能与机理研究[J]. 环境科学学报, 2022, 42(12): 215-223.
[24] 王辉辉, 王雪梅, 李子富, 等. 高固体条件下黑水添加对厨余垃圾厌氧发酵的影响[J]. 环境工程学报, 2024, 18(1): 237-244.
[25] 祝佳欣, 朱雯喆, 徐俊, 等. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019.
[26] Tian H L, Fotidis I A, Mancini E, et al. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics[J]. Bioresource Technology, 2018, 247: 616-623.
[27] James A, Li M, Mazarji M, et al. Coupling electron bifurcation and interspecies electron transfer to mitigate ammonia and acids inhibition[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115166.
[28] Vihodceva S, Šutka A, Sihtmäe M, et al. Antibacterial activity of positively and negatively charged hematite (α-Fe2O3) nanoparticles to escherichia coli, staphylococcus aureus and vibrio fischeri[J]. Nanomaterials, 2021, 11(3): 652.
[29] Hassanpourmoghadam L, Aminzadeh Goharrizi B, Torabian A, et al. Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge[J]. Biomass and Bioenergy, 2023, 169: 106692.
[30] Zhang Z H, Gao P, Cheng J Q, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63.
[31] 潘婧冉, 高苏, 赵国柱, 等. 餐厨垃圾厌氧消化处理主要过程的微生物群落结构分析[J]. 微生物学通报, 2019, 46(11): 2886-2899.
[32] Ao T J, Xie Z J, Zhou P, et al. Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste[J]. Bioprocess and Biosystems Engineering, 2021, 44(6): 1201-1214.
[33] Zhang H, Yuan W D, Dong Q, et al. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress[J]. Water Research, 2022, 213: 118152.
[34] 张虹, 李蕾, 彭韵, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J]. 中国环境科学, 2020, 40(8): 3465-3474.
[35] Mu H, Zhao C H, Zhao Y X, et al. Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste: Performance and microbial characteristics analysis[J]. Bioresource Technology, 2017, 236: 68-76.
[36] Ma K L, Wang W, Liu Y Q, et al. Insight into the performance and microbial community profiles of magnetite-amended anaerobic digestion: Varying promotion effects at increased loads[J]. Bioresource Technology, 2021, 329: 124928.