[1] Zhang C L, Xu T, Feng H L, et al. Greenhouse gas emissions from landfills: A review and bibliometric analysis[J]. Sustainability, 2019, 11(8): 2282.
[2] Parthiba Karthikeyan O, Trably E, Mehariya S, et al. Pretreatment of food waste for methane and hydrogen recovery: A review[J]. Bioresource Technology, 2018, 249: 1025-1039.
[3] Zhang C S, Su H J, Baeyens J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392.
[4] Xu F Q, Li Y Y, Ge X M, et al. Anaerobic digestion of food waste-challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058.
[5] Jia T T, Wang Z Z, Shan H Q, et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resources, Conservation and Recycling, 2017, 127: 190-195.
[6] Wei W, Cai Z Q, Fu J, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351: 1159-1165.
[7] Fu F L, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205.
[8] Li Y, Chen Y G, Wu J. Enhancement of methane production in anaerobic digestion process: A review[J]. Applied Energy, 2019, 240: 120-137.
[9] He Z W, Zou Z S, Ren Y X, et al. Roles of zero-valent iron in anaerobic digestion: Mechanisms, advances and perspectives[J]. Science of The Total Environment, 2022, 852: 158420.
[10] Wang R N, Abdullah Al-Dhabi N, Jiang Y, et al. Effect of nano zero-valent iron on the anaerobic digestion of food waste: Performance and mechanism[J]. Fuel, 2024, 366: 131342.
[11] Wang P L, Li X N, Li Y F, et al. Enhanced anaerobic digestion performance of food waste by zero-valent iron and iron oxides nanoparticles: Comparative analyses of microbial community and metabolism[J]. Bioresource Technology, 2023, 371: 128633.
[12] Zhang P S, Zhang J X, Zhang T Y, et al. Zero-valent iron enhanced methane production of anaerobic digestion by reinforcing microbial electron bifurcation coupled with direct inter-species electron transfer[J]. Water Research, 2024, 255: 121428.
[13] Huang Y X, Guo J L, Zhang C Y, et al. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion[J]. Water Research, 2016, 88: 475-480.
[14] Zhou J, You X G, Jia T T, et al. Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion process[J]. Environmental Technology, 2020, 41(24): 3199-3209.
[15] 左斯琪, 李子富. 黑水无害化及资源化处理技术进展[J]. 环境卫生工程, 2020, 28(4): 37-44.
[16] Jiang B Y, Arrigoni J, Zhang W N, et al. Evaluation of nano-scaled zero valent iron (nZVI) effects on continuous syngas biomethanation under the thermophilic condition[J]. Chemical Engineering Journal, 2023, 470: 144231.
[17] Guo Y, Xiao F, Yan M, et al. Effect of ammonia on anaerobic digestion: Focusing on energy flow and electron transfer[J]. Chemical Engineering Journal, 2023, 471: 144638.
[18] Jiang Y, McAdam E, Zhang Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: A critical review[J]. Journal of Water Process Engineering, 2019, 32: 100899.
[19] 陈文静. 纳米零价铁改性生物炭对水中氨氮的吸附特性及机制[J]. 环境科学, 2023, 44(6): 3270-3277.
[20] Liu Y, Wang J L. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review[J]. Science of The Total Environment, 2019, 671: 388-403.
[21] Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review[J]. Process Biochemistry, 2013, 48(5/6): 901-911.
[22] 龚云辉. pH对高原山地农村沟渠底泥氮形态及氨氮释放通量影响模拟研究[J]. 生态与农村环境学报, 2021, 37(3): 378-386.
[23] Yang J, Zhang J, Du X, et al. Ammonia inhibition in anaerobic digestion of organic waste: A review[J]. International Journal of Environmental Science and Technology, 2025, 22(5): 3927-3942.
[24] Vidal-Antich C, Peces M, Perez-Esteban N, et al. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge[J]. Science of The Total Environment, 2022, 849: 157920.
[25] Wang S Q, Li D N, Zhang K Q, et al. Effects of initial volatile fatty acid concentrations on process characteristics, microbial communities, and metabolic pathways on solid-state anaerobic digestion[J]. Bioresource Technology, 2023, 369: 128461.
[26] 张小芳, 王欣, 汪惠勤, 等. 人体肠道菌群代谢氨基酸产生短链脂肪酸及对细胞通透性的影响[J]. 中国食品学报, 2021, 21(7): 60-67.
[27] Nwanebu E, Omanovic S, Hrapovic S, et al. Carbon dioxide conversion to acetate and methane in a microbial electrosynthesis cell employing an electrically-conductive polymer cathode modified by nickel-based coatings[J]. International Journal of Hydrogen Energy, 2022, 47(1): 203-215.
[28] Taber K S. The use of cronbach’s alpha when developing and reporting research instruments in science education[J]. Research in Science Education, 2018, 48(6): 1273-1296.
[29] Haegeman B, Hamelin J, Moriarty J, et al. Robust estimation of microbial diversity in theory and in practice[J]. The ISME Journal, 2013, 7(6): 1092-1101.
[30] Yadav M, Joshi C, Paritosh K, et al. Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions[J]. Metabolic Engineering, 2022, 69: 323-337.
[31] Yin Q, Wu G. A holistic metabolic pathway of anaerobic digestion integrating substrate degradation, electron transfer, energy conservation, and information flow[M] // Wu G. Anaerobic Digestion. Switzerland: Springer Cham, 2024: 17-39.
[32] Menzel T, Neubauer P, Junne S. Role of microbial hydrolysis in anaerobic digestion[J]. Energies, 2020, 13(21): 5555.
[33] Shakeri Yekta S, Liu T, Axelsson Bjerg M, et al. Sulfide level in municipal sludge digesters affects microbial community response to long-chain fatty acid loads[J]. Biotechnology for Biofuels, 2019, 12: 259.
[34] Zhou J J, Smith J A, Li M, et al. Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens[J]. mBio, 2023, 14(4): e0036023.
[35] Wang P, Chen X T, Liang X F, et al. Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2019, 293: 122092.