|本期目录/Table of Contents|

[1]邱小雪,周寅鹏,龚文丽,等.季铵化纤维素微球的制备及其动态吸附性能[J].浙江理工大学学报,2026,55-56(自科一):45-56.
 QIU Xiaoxue,ZHOU Yinpeng,GONG Wenli,et al.Preparation and dynamic adsorption properties of quaternized cellulose porous microspheres[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):45-56.
点击复制

季铵化纤维素微球的制备及其动态吸附性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
55-56
期数:
2026年自科第一期
页码:
45-56
栏目:
出版日期:
2026-01-10

文章信息/Info

Title:
Preparation and dynamic adsorption properties of quaternized cellulose porous microspheres
文章编号:
1673-3851(2026) 01-0045-12
作者:
邱小雪周寅鹏龚文丽杨武迪刘琳
浙江理工大学材料科学与工程学院 ,杭州 310018
Author(s):
QIU Xiaoxue ZHOU Yinpeng GONG Wenli YANG Wudi LIU Lin
College of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
纤维素多孔微球季铵化改性 动态吸附性能蛋白纯化响应面分析
分类号:
Q816
文献标志码:
A
摘要:
为了提高现有蛋白纯化用纤维素微球的传质速率及吸附效率 , 将环氧季铵盐(2, 3-Epoxy-propel- trimethylammonium chloride, EPTAC) 接枝到纤维素分子骨架上 ,采用乳液自组装法制备季铵化纤维素多孔微球(Quaternized celluloseporousmicrospheres, QCPM) ; 以 QCPM为填料搭建动态吸附装置 , 以牛血清白蛋白(Bovine serum albumin, BSA) 为 目标蛋白 ,分析填料高度、进液速度和进液质量浓度对 QCPM动态吸附性能的影响 ,并通过响应面法分析填料高度、进液速度和进液质量浓度三因素对平衡吸附量的影响 。结果表明:所制备的 QCPM兼具互连多级孔结构与丰富的活性位点 , 比表面积高达 242.76 m2/g,可促进蛋白质的快速传质 ,并提高分离效率;在动态蛋白吸附过程中 ,增加填料高度和进液质量浓度 ,降低进液流速 ,均有助于提高 QCPM对 BSA的吸附能力 ,最大吸附量为 50.38mg/g,其动态吸附行为符合 Yoon-Nelson和 Modified dose response模型 , 为均匀表面的单分子层吸附;填料高度与进液速度对平衡吸附量的影响呈显著主效应 ,其作用强度优于进液质量浓度对平衡吸附量的影响 ,三 因素间的交互作用以填料高度与进液质量浓度为主 。该研究以纤维素为基质 ,通过乳化法制备 QCPM,解决了传质受限与吸附效率低的难题 ,为蛋白质分离纯化领域提供了理论依据与实践指导。

参考文献/References:

[1] Siew Y Y, Rai A, Pek H B, et al. New and efficient purification process for recombinant human insulin produced in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2021, 105(24): 9137-9151.
[2] Lin W, Zhao Z G, Du W J, et al. Interferon-gamma-inducible protein 16 inhibits hepatocellular carcinoma via interferon regulatory factor 3 on chemosensitivity[J]. Digestive Diseases and Sciences, 2024, 69(2): 491-501.
[3] Mekala R J, Nalluri P H, Reddy N P, et al. Emerging trends and therapeutic applications of monoclonal antibodies[J]. Gene, 2024, 925: 148607.
[4] Kastenhofer J, Cataldo A L, Ebner J, et al. Economic and ecological benefits of a leaky E. coli strain for downstream processing: A case study for staphylococcal protein A[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(6): 1667-1674.
[5] Liu S X, Li Z H, Yu B, et al. Recent advances on protein separation and purification methods[J]. Advances in Colloid and Interface Science, 2020, 284: 102254.
[6] Lei D, Tang Z H, Zhao L S, et al. Macroporous cellulose microspheres derived from cigarette butts waste: Preparation, characterization, and application in proteins adsorption[J]. Cellulose, 2023, 30(14): 9061-9077.
[7] Zhao L S, Li S S, Liang C, et al. High-strength and low-crystallinity cellulose/agarose composite microspheres: Fabrication, characterization and protein adsorption[J]. Biochemical Engineering Journal, 2021, 166: 107826.
[8] Kumpanenko I V, Dyubanov M V, Ivanova N A, et al. Dynamic adsorption of ammonium ions from aqueous solutions by strong-acid cationites[J]. Russian Journal of Physical Chemistry B, 2022, 14(6): 914-921.
[9] Jiang S S, Lyu Y, Zhang J, et al. Continuous adsorption removal of organic pollutants from wastewater in a UiO-66 fixed bed column[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 111951.
[10] 袁纯怡, 孙玉柱, 杨颖, 等. D301树脂动态吸附溴离子过程探究及模型拟合[J]. 过程工程学报, 2020, 20(6): 655-666.
[11] Zhang L W, Hua J R, Zhu W J, et al. Flocculation performance of hyperbranched polyethylenimine-grafted cellulose in wastewater treatment[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1592-1601.
[12] Yao S Q, Shi W J, Chen X Y, et al. IR spectra of quaternary ammonium cellulose and its adsorption properties to POPs[J]. Spectroscopy and Spectral Analysis, 2009, 29(9): 2370-2374.
[13] Wang Q, Li Y J, Tang Z Y, et al. Regulation of macroporous cellulose microspheres via phase separation force induced by carbon nanotubes doping for enhanced protein adsorption[J]. Carbohydrate Polymers, 2024, 344: 122541.
[14] He X Y, Suo X K, Bai X Q, et al. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances[J]. Applied Surface Science, 2018, 440: 300-307.
[15] Zhou Y, Jiang Y Z, Zhang Y, et al. Improvement of antibacterial and antifouling properties of a cellulose acetate membrane by surface grafting quaternary ammonium salt[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38358-38369.
[16] Qiao L Z, Wang T, Liao Y X, et al. Macroporous chitin microspheres prepared by surfactant micelle swelling strategy for rapid capture of lead(II) from wastewater[J]. Carbohydrate Polymers, 2022, 276: 118775.
[17] Qiao L Z, Zhao L S, Liang C, et al. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation[J]. Journal of Materials Chemistry B, 2019, 7(36): 5510-5519.
[18] Li S S, Shi C, Ai H, et al. Bacterial cellulose-based submicrobundle framework-induced hyperporous cellulose microspheres functionalized by ionic liquids for anion exchange chromatography[J]. Chemical Engineering Journal, 2023, 475: 146030.
[19] Li S S, Wang Y H, Qiao L Z, et al. Fabrication of self-reinforced polymorphic cellulose nanofiber composite microspheres for highly efficient adsorption of proteins[J]. Cellulose, 2022, 29(9): 5191-5205.
[20] Fu Q, Si Y, Duan C, et al. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation[J]. Advanced Functional Materials, 2019, 29(13): 1808234.
[21] 郑康, 龚文丽, 鲍杰, 等. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(5): 102-112.
[22] Omitola O B, Abonyi M N, Akpomie K G, et al. Adams-Bohart, Yoon-Nelson, and Thomas modeling of the fix-bed continuous column adsorption of amoxicillin onto silver nanoparticle-maize leaf composite[J]. Applied Water Science, 2022, 12(5): 94.
[23] Vera M, Aguilar J, Coronel S, et al. Machine learning for the adsorptive removal of ciprofloxacin using sugarcane bagasse as a low-cost biosorbent: Comparison of analytic, mechanistic, and neural network modeling[J]. Environmental Science and Pollution Research, 2024, 31(35): 48674-48686.
[24] Gu Y M, Feng H X, Wang B, et al. Adsorption of Pb2+ by inorganic liquid-treated sepiolite: Adsorption process optimization and mechanism analysis via response surface methodology[J]. Microporous and Mesoporous Materials, 2024, 363: 112821.
[25] 陆甜, 陶渊, 杨托, 等. 石墨相氮化碳特异性吸附血液中血红蛋白的条件优化[J]. 中国组织工程研究, 2023, 27(30): 4817-4823.

备注/Memo

备注/Memo:
基金项目 : 国家自然科学基金项目(22375181)收稿日期 : 2025-05-12 网络出版日期 : 2025-09-16
作者简介 : 邱小雪(1999— ) ,女 , 四川泸州人 ,硕士研究生 ,主要从事纤维素基功能材料的研究。通信作者 : 刘 琳 ,E-mail:liulin@zstu. edu. cn
更新日期/Last Update: 2026-01-08