|本期目录/Table of Contents|

[1]赵旺涛,王文强,孙国金,等.基于钠盐活化剂的太湖蓝藻源氮自掺杂活性炭制备及其CO2吸附性能研究[J].浙江理工大学学报,2026,55-56(自科一):13-25.
 ZHAO Wangtao,WANG Wenqiang,SUN Guojin,et al.Preparation of nitrogen self-doped activated carbon derived from Taihu cyanobacteria based on sodium salt activators and its CO2 adsorption performance[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):13-25.
点击复制

基于钠盐活化剂的太湖蓝藻源氮自掺杂活性炭制备及其CO2吸附性能研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
55-56
期数:
2026年自科第一期
页码:
13-25
栏目:
出版日期:
2026-01-10

文章信息/Info

Title:
Preparation of nitrogen self-doped activated carbon derived from Taihu cyanobacteria based on sodium salt activators and its CO2 adsorption performance
文章编号:
1673-3851(2026) 01-0013-13
作者:
赵旺涛王文强孙国金曹志海
1. 浙江理工大学生物基纤维材料全国重点实验室 ,杭州 310018;2. 浙江水利水电学院水利与环境工程学院 ,杭州 310018
Author(s):
ZHAO Wangtao WANG Wenqiang SUN Guojin CAO Zhihai
1. State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
关键词:
活性炭 蓝藻钠盐活化剂CO2 吸附吸附机制
分类号:
X51;TQ424
文献标志码:
A
摘要:
为制备生物质废弃物源高性能氮自掺杂活性炭 , 以及阐明活化剂类型对其结构与 CO2 吸附性能的影响规律 , 以太湖蓝藻为前驱体 ,分别采用 NaOH、Na2CO3 和 NaHCO3 活化剂 ,通过热化学活化法制备蓝藻基活性炭材料(X-CAC,X代表活化剂种类 ,CAC表示蓝藻基活性炭);采用电镜、N2/CO2 吸脱附、X射线衍射、Raman光谱、红外光谱和 X射线能谱等方法表征 X-CAC的形貌、孔结构、碳骨架有序性、表面官能团和元素组成等结构;评估X-CAC的 CO2 吸附性能 ,并结合模型拟合探讨 X-CAC的 CO2 吸附行为 。结果表明:3种活化剂均具备良好的成孔能力 ,其中 NaHCO3-CAC具有最高的比表面积、窄微孔数量;X-CAC表面富含含氮和含氧官能团 ,其中 NaHCO3- CAC 的 自掺杂氮含量最高 ,且氮元素主要以吡啶氮形式存在;基于高的窄微孔数量以及高的氮含量 ,NaHCO3-CAC在 0 ℃和 25℃、1 bar条件下对 CO2 的吸附容量可达 4.48 mmol/g和 2.61 mmol/g,高于常见市售活性炭产品 ,且具有优异的选择性、动态 CO2 吸附性能和循环吸附稳定性;X-CAC具有异质吸附表面及强弱 2类吸附位点 ,CO2 在其表面主要以单层和多层混合吸附的复杂方式进行 。该研究可为藻基生物质废弃物的资源化以及藻基活性炭的结构优化和性能提升提供参考。

参考文献/References:

[1] Ren X M, Li H, Chen J, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture[J]. Carbon, 2017, 114: 473-481.
[2] Kong X G, Lin X, Cai Y C, et al. Effects of pore characteristics on CO2 adsorption performance of coal slime with different metamorphic degrees[J]. Journal of Environmental Management, 2024, 368: 122094.
[3] He M Q, Zhao H Q, Jia J Y, et al. Multiscale analysis of adsorption mechanisms on porous carbon: An investigation into the impact of intrinsic defects and pore size[J]. Environmental Research, 2025, 267: 120701.
[4] 朱凌凯, 兰平, 崔利. 除铅碳材料及其改性方法研究进展[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 191-204.
[5] Oh S, Lee J E, Kim H, et al. Nitrogen doping of porous carbon-supported CuCl(I) for enhanced CO adsorption[J]. Carbon, 2025, 238: 120202.
[6] Wang J Y, Huo T, Zhao Y H, et al. Recent advances in heteroatoms-doped porous carbon electrode materials for supercapacitors: A review[J]. Journal of Energy Storage, 2025, 110: 115216.
[7] Ma X C, Li L Q, Zeng Z, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science, 2019, 481: 1139-1147.
[8] Zhang X K, Ma X Q, Yu Z S, et al. Preparation of high-value porous carbon by microwave treatment of chili straw pyrolysis residue[J]. Bioresource Technology, 2022, 360: 127520.
[9] Bai J L, Huang J M, Yu Q Y, et al. N-doped porous carbon derived from macadamia nutshell for CO2 adsorption[J]. Fuel Processing Technology, 2023, 249: 107854.
[10] Ai J G, Yang S H, Sun Y N, et al. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors[J]. Journal of Power Sources, 2021, 484: 229221.
[11] Hu Y M, Xie K H, Wang H W, et al. Preparation and property of N-doped porous carbon material by one-step pyrolysis of protein-rich algal biomass[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105221.
[12] Zhang S J, Lu Z C, Li Y X, et al. N-doped porous carbon network anchoring on hollow wooden carbon fibers for high-performance electrode materials in supercapacitors[J]. Biomass Conversion and Biorefinery, 2025, 15: 271-283.
[13] Song L Y, Cheng H, Liu C Y, et al. Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: A case study for removing atrazine from water[J]. Biochar, 2024, 6(1): 76.
[14] Wang H, Wang H, Liu G S, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: Role of the intrinsic N[J]. Science of the Total Environment, 2021, 771: 145424.
[15] Mi Y F, Wang W Q, Zhang S, et al. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption[J]. Chinese Journal of Chemical Engineering, 2024, 67: 106-116.
[16] Zhou Y P, Peng H J, Jiang L J, et al. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation[J]. Journal of Hazardous Materials, 2024, 462: 132729.
[17] Xu Y, Yang Z X, Zhang G J, et al. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators[J]. Journal of Cleaner Production, 2020, 264: 121645.
[18] Gao Y, Yue Q Y, Gao B Y, et al. Insight into activated carbon from different kinds of chemical activating agents: A review[J]. Science of the Total Environment, 2020, 746: 141094.
[19] Wu Y, Peng S S, Chen B, et al. In situ O and N self-doped fruit waste-derived microporous activated carbon for all-solid-state supercapacitors[J]. Energy & Fuels, 2024, 38(7): 6072-6084.
[20] Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, et al. Comparative characterization study of microporous carbons by HRTEM image analysis and gas adsorption[J]. The Journal of Physical Chemistry B, 2005, 109(31): 15032-15036.
[21] Singh G, Maria Ruban A, Geng X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chemical Engineering Journal, 2023, 451: 139045.
[22] Deng J, Xiong T Y, Xu F, et al. Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors[J]. Green Chemistry, 2015, 17(7): 4053-4060.
[23] Kim E, Lim K, Lee T, et al. Mono-dispersed DDR zeolite particles by seeded growth and their CO2, N2, and H2O adsorption properties[J]. Chemical Engineering Journal, 2016, 306: 876-888.
[24] Wang Z J, Liu C, Ouyang J, et al. Porous carbon materials derived from rice husk pyrolysis with NaCl/Na2CO3 binary molten salt for CO2 capture[J]. Industrial Crops and Products, 2025, 227: 120808.
[25] Geng X, Singh G, Sathish C I, et al. Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage[J]. Carbon, 2023, 214: 118347.
[26] Wu Y F, Hsiao Y C, Ou Y J, et al. Synthesis of cigarette filter-derived activated carbon using various activating agents for flexible capacitive supercapacitors[J]. Journal of Energy Storage, 2022, 54: 105379.
[27] Singla M K, Gupta J, Safaraliev M, et al. Characterization of an activated carbon electrode made from coconut shell precursor for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2024, 61: 1417-1428.
[28] Demiral H, Güngör C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse[J]. Journal of Cleaner Production, 2016, 124: 103-113.
[29] Chen X J, Guo Y X, Cui J L, et al. Activated carbon preparation with the addition of coke-making by-product-coke powder: Texture evolution and mechanism[J]. Journal of Cleaner Production, 2019, 237: 117812.
[30] Wang J, Liu T L, Huang Q X, et al. Production and characterization of high quality activated carbon from oily sludge[J]. Fuel Processing Technology, 2017, 162: 13-19.
[31] Janković B, Manić N, Dodevski V, et al. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization[J]. Journal of Cleaner Production, 2019, 236: 117614.
[32] Peredo-Mancilla D, Ghimbeu C M, Ho B N, et al. Comparative study of the CH4/CO2 adsorption selectivity of activated carbons for biogas upgrading[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103368.
[33] Sun G J, Wang W Q, Zhao W T, et al. Upcycling of biomass waste "Taihu Cyanobacteria" to N-self-doped activated carbons for efficient CO2 adsorption[J]. Surfaces and Interfaces, 2025, 72: 107366.
[34] Han H S, Noh Y S, Kim Y G, et al. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts[J]. Green Chemistry, 2020, 22(1): 71-84.
[35] Yang W, Zhang Y, Wang J Y, et al. Unprecedented 100% conversion from pyridinic to pyrrolic nitrogen configuration for electrochemically active nitrogen-doped carbon materials[J]. Journal of Colloid and Interface Science, 2024, 662: 883-892.
[36] Teng Y, Zhu J W, Xiao S, et al. Exploring chitosan-loaded activated carbon fiber for the enhanced adsorption of Pb(II)-EDTA complex from electroplating wastewater in batch and continuous processes[J]. Separation and Purification Technology, 2022, 299: 121659.
[37] Xing L A, Yang F, Zhong X, et al. Ultra-microporous cotton fiber-derived activated carbon by a facile one-step chemical activation strategy for efficient CO2 adsorption[J]. Separation and Purification Technology, 2023, 324: 124470.
[38] Wu L, Shang Z S, Chen S X, et al. Raw walnut shell modified by non-thermal plasma in ultrafine water mist for adsorptive removal of Cu(II) from aqueous solution[J]. RSC Advances, 2018, 8(39): 21993-22003.
[39] Kamran U, Rhee K Y, Lee S Y, et al. Solvent-free conversion of cucumber peels to N-doped microporous carbons for efficient CO2 capture performance[J]. Journal of Cleaner Production, 2022, 369: 133367.
[40] Park J M, Woo H C, Jhung S H. Effective CO2 adsorption at low pressure over nitrogen-enriched porous carbons, derived from melamine-loaded polyaniline[J]. Chemical Engineering Journal, 2021, 412: 128641.
[41] Yuan X Z, Li S J, Jeon S, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010.
[42] Siemak J, Ulejczyk B, Mikołajczak G, et al. Cold nitrogen plasma: A groundbreaking eco-friendly technique for the surface modification of activated carbon aimed at elevating its carbon dioxide adsorption capacity[J]. Applied Sciences, 2024, 14(15): 6438.
[43] Rehman A, Park S J. Highlighting the relative effects of surface characteristics and porosity on CO2 capture by adsorbents templated from melamine-based polyaminals[J]. Journal of Solid State Chemistry, 2018, 258: 573-581.
[44] Huang P H, Jhan J W, Cheng Y M, et al. Effects of carbonization parameters of moso-bamboo-based porous charcoal on capturing carbon dioxide[J]. The Scientific World Journal, 2014, 2014(1): 937867.
[45] Zhu T T, Song Z Y, Lin J M, et al. Ion-pore size match effects and high-performance cucurbit[8]uril-carbon-based supercapacitors[J]. Electrochimica Acta, 2022, 405: 139827.
[46] Yan J J, Zhu D Z, Lv Y K, et al. Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors[J]. Chinese Chemical Letters, 2020, 31(2): 579-582.
[47] Shi W W, Yu J, Liu H L, et al. Hierarchically nanoporous carbon for CO2 capture and separation: Roles of morphology, porosity, and surface chemistry[J]. ACS Applied Nano Materials, 2023, 6(9): 7887-7900.
[48] Miao Z K, Guo Z K, Qiu G F, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50: 101585.
[49] Kamran U, Park S J. Tuning ratios of KOH and NaOH on acetic acid-mediated chitosan-based porous carbons for improving their textural features and CO2 uptakes[J]. Journal of CO2 Utilization, 2020, 40: 101212.
[50] Boujibar O, Souikni A, Ghamouss F, et al. CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1995-2002.
[51] Mittal A, Kaur D, Malviya A, et al. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents[J]. Journal of Colloid and Interface Science, 2009, 337(2): 345-354.
[52] Wang J C, Wei Y J, Ma Z F. Modified dual-site Langmuir adsorption equilibrium models from a GCMC molecular simulation[J]. Applied Sciences, 2020, 10(4): 1311.

备注/Memo

备注/Memo:
收稿日期 : 2025-09-25 网络出版日期 : 2025-12-04基金项目 : 国家重点研发计划项目(2022YFE0128600)作者简介 : 赵旺涛(2001— ) ,男 ,山西临汾人 ,硕士研究生 ,主要从事多孔碳吸附方面的研究。通信作者 : 曹志海 ,E-mail: zhcao@zstu. edu. cn
更新日期/Last Update: 2026-01-08