|本期目录/Table of Contents|

[1]胡张挺,陈乾浩,叶昊,等.共价有机框架纤维膜的制备及其海水提铀应用[J].浙江理工大学学报,2026,55-56(自科一):1-12.
 HU Zhangting,CHEN Qianhao,YE Hao,et al.Preparation of a covalent organic framework fiber membrane and its application to uranium extraction from seawater[J].Journal of Zhejiang Sci-Tech University,2026,55-56(自科一):1-12.
点击复制

共价有机框架纤维膜的制备及其海水提铀应用()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
55-56
期数:
2026年自科第一期
页码:
1-12
栏目:
出版日期:
2026-01-10

文章信息/Info

Title:
Preparation of a covalent organic framework fiber membrane and its application to uranium extraction from seawater
文章编号:
1673-3851(2026) 01-0001-12
作者:
胡张挺陈乾浩叶昊温柔铭袁梓豪吴铭榜姚菊明
浙江理工大学材料科学与工程学院 ,杭州 310018
Author(s):
HU Zhangting CHEN Qianhao YE Hao WEN Rouming YUAN Zihao WU Mingbang YAO Juming
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
共价有机框架静电纺丝海水提铀吸附多级孔结构
分类号:
X524
文献标志码:
A
摘要:
为解决共价有机框架(Covalentorganicframeworks,COFs)粉末在海水提铀中分离困难和传质效率低等问题 ,通过静电纺丝牺牲模板法与原位合成法制备自支撑 COFs纤维膜(COFsfibermembrane,COFs-M) 。分析 COFs-M的微观形貌、比表面积、孔径分布、晶体结构和热稳定性能 ,并探究铀溶液 pH值、吸附时长、铀起始质量浓度以及循环吸附-解吸次数等因素对 COFs-M铀吸附性能的影响 。结果表明:COFs-M纤维截面呈多级孔结构 ,拥有远高于粉末的比表面积(77.48m2/g) ,微孔以小于 2 nm 为主 ,有利于促进铀酰离子的传质过程;具有良好结晶性和热稳定性;在 pH值为 6.00时吸附量最高 ,最大理论吸附容量达217.97mg/g,较传统粉末状 COFs(67.53mg/g)提升了 2.2倍 ,吸附过程符合伪二级动力学模型 , 实现快速化学吸附;经 6 次循环使用后 ,铀酰吸附率仍保持在 91.18%以上 ,有效克服了粉末回收困难与吸附团聚问题 。该文制备的 COFs-M保留了原有粉末的优异化学结构 , 而且通过提供铀酰离子快速迁移的传质通道和暴露更多的吸附位点等方式提高了吸附能力 ,为海水提铀材料的实际应用提供了创新策略。

参考文献/References:

[1] You W B, Peng W T, Tian Z C, et al. Uranium bioremediation with U(VI)-reducing bacteria[J]. Science of The Total Environment, 2021, 798: 149107.

[2] 宋艳, 牛玉清, 宿延涛, 等. 未来海水提铀的前景规划与展望[J]. 核化学与放射化学, 2022, 44(3): 229-232.

[3] 宋艳, 王凤菊, 陈刚, 等. PAO/In-N-C电极材料对海水中铀的提取性能研究[J]. 湿法冶金, 2025, 44(2): 215-221.

[4] Wang C, Helal A S, Wang Z Q, et al. Uranium in situ electrolytic deposition with a reusable functional graphene-foam electrode[J]. Advanced Materials, 2021, 33(38): e2102633.

[5] Yang H, Liu X L, Hao M J, et al. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater[J]. Advanced Materials, 2021, 33(51): e2106621.

[6] Xu L Z, Chen Y B, Zhang Y Y, et al. Highly adherent Ti3C2Tx nanosheet-loaded amidoxime polyacrylonitrile composite membrane for uranium extraction[J]. Separation and Purification Technology, 2024, 331: 125613.

[7] 张越, 刘佳鑫, 马敬, 等. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100.

[8] Pachfule P, Kandmabeth S, Mallick A, et al. Hollow tubular porous covalent organic framework (COF) nanostructures[J]. Chemical Communications, 2015, 51(58): 11717-11720.

[9] Fan C Y, Wu H, Guan J Y, et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes[J]. Angewandte Chemie (International Ed), 2021, 60(33): 18051-18058.

[10] Ramezanzade V, Dinari M, Mehvari F. Investigation study of methyl violet photodegradation over alginate-carboxymethyl cellulose/titanium(IV) oxide/covalent organic frameworks bio-nanocomposite beads under ultraviolet irradiation[J]. International Journal of Biological Macromolecules, 2024, 277: 134287.

[11] Lu Y, Liang Y, Zhao Y X, et al. Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1644-1650.

[12] Wang M D, Wang Y T, Zhao J Y, et al. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination[J]. Angewandte Chemie (International Ed), 2023, 62(13): e202219084.

[13] Li M, Qing B, Luo H Y, et al. Recyclable covalent organic frameworks/cellulose aerogels for efficient uranium adsorption[J]. International Journal of Biological Macromolecules, 2024, 282: 137156.

[14] Wang Y G, Wu Q, Wang X, et al. In situ electrochemical interfacial polymerization for covalent organic frameworks with tunable electrochromism[J]. Angewandte Chemie International Edition, 2024, 136(46): e202413071.

[15] Ding C H, Breunig M, Timm J, et al. Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: Preparation method and characterization[J]. Advanced Functional Materials, 2021, 31(49): 2106507.

[16] Xiong K H, Wang Y X, Zhang F L, et al. Linker length-dependent photocatalytic activity of β-ketoenamine covalent organic frameworks[J]. Applied Catalysis B: Environmental, 2023, 322: 122135.

[17] Li R, Zhang K, Yang X, et al. Construction of a carboxyl-functionalized clover-like covalent organic framework for selective adsorption of organic dyes[J]. Separation and Purification Technology, 2024, 340: 126765.

[18] Xiao C M, Yao Y Y, Guo X, et al. Ultralight and robust covalent organic framework fiber aerogels[J]. Small, 2024, 20(32): e2311881.

[19] Leng R, Sun Y C, Wang C Z, et al. Design and fabrication of hypercrosslinked covalent organic adsorbents for selective uranium extraction[J]. Environmental Science & Technology, 2023, 57(26): 9615-9626.

[20] Pang X, Shi B B, Liu Y W, et al. Confining phosphoric acid in quaternized COF channels for ultra-stable and fast anhydrous proton transport[J]. Angewandte Chemie, 2025, 137(13): e202423458.

[21] Da H J, Yang C X, Yan X P. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220.

[22] Wang X Q, Liu H R, Chen S X, et al. In situ construction of covalent organic framework membranes on polyacrylonitrile nanofibers for carbon dioxide capture[J]. ACS Applied Nano Materials, 2024, 7(9): 10911-10920.

[23] Li X, Qi Y, Yue G Z, et al. Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(VI) and Hg(II)[J]. Green Chemistry, 2019, 21(3): 649-657.

[24] Zhang J, Zhou L H, Jia Z M, et al. Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium[J]. Nanoscale, 2020, 12(47): 24044-24053.

[25] 龚文丽, 丁雁鸿, 张晨一, 等. 超分子结构纤维素基吸附剂对水体中钴离子的去除[J]. 浙江理工大学学报(自然科学版), 2021, 46(5): 604-611.

[26] Cui W R, Chen Y R, Xu W, et al. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction[J]. Separation and Purification Technology, 2023, 306: 122726.

[27] Huo L, Gao F X, Li M K, et al. Polyamide reinforced alginate-based hydrogel for efficient uranium extraction from seawater[J]. Separation and Purification Technology, 2025, 371: 133330.

[28] Ahmad Z, Jan F, Li Y, et al. Function-oriented network of bifunctional poly(amidoxime-ethyleneimine) decorated on graphene oxide for synergistically enhanced uranium extraction from seawater[J]. Separation and Purification Technology, 2025, 371: 133342.

[29] Zhang L, Sun M Y, Li X Y, et al. Uranium extraction from radioactive wastewater by NH2-MIL-125 immobilized in a double-network aerogel microsphere[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(14): 5345-5354.

[30] Sun W Y, Feng L J, Zhang J C, et al. Amidoxime group-anchored single cobalt atoms for anti-biofouling during uranium extraction from seawater[J]. Advanced Science, 2022, 9(10): 2105008.

[31] Wu M B, Liu S C, Fei J Y, et al. Natural cellulose-based microspheres decorated with amidoxime groups for decontamination of radioactive wastewater[J]. Applied Surface Science, 2022, 597: 153659.

[32] Bi R X, Liu X, Peng Z H, et al. Covalent bonding confining polyoxometalates in covalent organic frameworks for efficiently capturing uranium[J]. Separation and Purification Technology, 2024, 330: 125333.

[33] Zhang C, Wang Z Y, Ma R C, et al. Overcoming chemical dissociation processes: Electrochemical modulation of high-affinity binding sites for rapid uranium extraction from Seawater[J]. Advanced Functional Materials, 2025, 35(2): 2412712.

[34] Wang S Y, Wei G, Xie Y H, et al. Constructing nanotraps in covalent organic framework for uranium sequestration[J]. Separation and Purification Technology, 2022, 303: 122256.

[35] Li N, Yang L, Wang D, et al. High-capacity amidoxime-functionalized β-cyclodextrin/graphene aerogel for selective uranium capture[J]. Environmental Science & Technology, 2021, 55(13): 9181-9188.

[36] 牟永晓, 曹建平, 陈媛媛, 等. 水溶液中四种脱氧核苷酸与水合铀酰离子相互作用的理论计算[J]. 无机化学学报, 2019, 35(9): 1609-1618.

[37] Liu P, Liu Y R, Ruan H, et al. Amine-functionalized polyetheretherketone prepared by simple solvothermal method for high-efficiency removal of uranium[J]. Desalination, 2025, 613: 119062.

相似文献/References:

[1]王敏超,熊杰.聚酰亚胺纳米纤维膜的制备和力学性能研究[J].浙江理工大学学报,2014,31-32(自科6):617.
 WANG Min chao,XIONG Jie.Study on Preparation and Mechanical Properties of Polyimide Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2014,31-32(自科一):617.
[2]张洁,张海涛,邢同海,等.超声处理对聚乳酸/丝素蛋白复合纳米纤维膜孔径的影响[J].浙江理工大学学报,2015,33-34(自科6):771.
 ZHANG Jie,ZHANG Hai tao,XING Tong hai,et al.Effects of Ultrasonic Treatment on Pore Size of Polylactic Acid /Silk Fibroin Composite Nanofiber Membrane[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科一):771.
[3]高强,童宁军,鲍纬,等.γ-Fe-2O-3@C柔性复合纳米纤维的制备及结构性能[J].浙江理工大学学报,2016,35-36(自科3):351.
 GAO Qiang,TONG Ningjun,BAO Wei,et al.Preparation, Structural Properties of Flexible γ Fe 2O 3@C Composite Nanofibers[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科一):351.
[4]张立,刘涛,张丽香,等.PEO/SA生物活性玻璃支架的制备和生物活性研究[J].浙江理工大学学报,2018,39-40(自科3):299.
 ZHANG Li,LIU Tao,ZHANG Lixiang,et al.Preparation and bioactivity of bioactive glass scaffold based on PEO/SA[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科一):299.
[5]訾园兴,刘涛,陈颖睿,等.SF/SA/HBG纤维支架材料的构建及体外生物矿化[J].浙江理工大学学报,2019,41-42(自科四):427.
 ZI Yuanxing,LIU Tao,CHEN Yingrui,et al.Construction of SF/SA/HBG fiber scaffold materials and in vitro biomineralization[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科一):427.
[6]康静,骆菁菁,熊杰.氧化锆@生物活性玻璃/碳纳米纤维复合膜的制备及其性能[J].浙江理工大学学报,2020,43-44(自科五):609.
 KANG Jing,LUO Jingjing,XIONG Jie.Preparation and properties of zirconia@bioactive glass/carbon nanofiber membranes[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科一):609.
[7]肖龙飞,李楠.炭黑负载酞菁共价有机框架衍生催化剂的制备及其氧还原性能[J].浙江理工大学学报,2021,45-46(自科四):453.
 XIAO Longfei,LI Nan.Preparation and oxygen reduction performance of carbon blackloaded phthalocyanine covalent organic framework derived catalyst[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科一):453.
[8]郑洁,刘涛,丁新波,等.SF/GO纳米纤维复合支架的制备及体外生物活性[J].浙江理工大学学报,2022,47-48(自科二):147.
 ZHENG Jie,LIU Tao,DING Xinbo,et al.Preparation and in vitro biological activity of SF/GO nanofiber composite scaffold[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科一):147.
[9]王莉,刘涛,丁新波,等.丝素-壳聚糖/聚氧化乙烯双层纳米纤维膜制备及其生物活性[J].浙江理工大学学报,2022,47-48(自科四):474.
 WANG Li,LIU Tao,DING Xinbo,et al.Preparation of silk fibroin chitosan/polyvinyl oxide  bilayer nanofiber membrane and its bioactivity[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科一):474.
[10]韦悦,王晟,纪律律.硒化钌复合碳纳米纤维的制备及其电催化析氢性能[J].浙江理工大学学报,2022,47-48(自科四):496.
 WEI Yue,WANG Sheng,JI Lülü.Preparation of ruthenium selenide composited carbon  nanofiber and its electrocatalytic hydrogen evolution performance[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科一):496.

备注/Memo

备注/Memo:
基金项目 : 国家自然科学基金项目(52103273) ;浙江理工大学基本科研业务费专项项目(23212109-Y)收稿日期 : 2025-05-07 网络出版日期 : 2025-09-30
作者简介 : 胡张挺(1998— ) ,男 ,安徽池州人 ,硕士研究生 ,主要从事海水提铀方面的研究。通信作者 : 吴铭榜 ,E-mail:wumingbang@zstu. edu. cn
更新日期/Last Update: 2026-01-08