[1] You W B, Peng W T, Tian Z C, et al. Uranium bioremediation with U(VI)-reducing bacteria[J]. Science of The Total Environment, 2021, 798: 149107.
[2] 宋艳, 牛玉清, 宿延涛, 等. 未来海水提铀的前景规划与展望[J]. 核化学与放射化学, 2022, 44(3): 229-232.
[3] 宋艳, 王凤菊, 陈刚, 等. PAO/In-N-C电极材料对海水中铀的提取性能研究[J]. 湿法冶金, 2025, 44(2): 215-221.
[4] Wang C, Helal A S, Wang Z Q, et al. Uranium in situ electrolytic deposition with a reusable functional graphene-foam electrode[J]. Advanced Materials, 2021, 33(38): e2102633.
[5] Yang H, Liu X L, Hao M J, et al. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater[J]. Advanced Materials, 2021, 33(51): e2106621.
[6] Xu L Z, Chen Y B, Zhang Y Y, et al. Highly adherent Ti3C2Tx nanosheet-loaded amidoxime polyacrylonitrile composite membrane for uranium extraction[J]. Separation and Purification Technology, 2024, 331: 125613.
[7] 张越, 刘佳鑫, 马敬, 等. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100.
[8] Pachfule P, Kandmabeth S, Mallick A, et al. Hollow tubular porous covalent organic framework (COF) nanostructures[J]. Chemical Communications, 2015, 51(58): 11717-11720.
[9] Fan C Y, Wu H, Guan J Y, et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes[J]. Angewandte Chemie (International Ed), 2021, 60(33): 18051-18058.
[10] Ramezanzade V, Dinari M, Mehvari F. Investigation study of methyl violet photodegradation over alginate-carboxymethyl cellulose/titanium(IV) oxide/covalent organic frameworks bio-nanocomposite beads under ultraviolet irradiation[J]. International Journal of Biological Macromolecules, 2024, 277: 134287.
[11] Lu Y, Liang Y, Zhao Y X, et al. Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1644-1650.
[12] Wang M D, Wang Y T, Zhao J Y, et al. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination[J]. Angewandte Chemie (International Ed), 2023, 62(13): e202219084.
[13] Li M, Qing B, Luo H Y, et al. Recyclable covalent organic frameworks/cellulose aerogels for efficient uranium adsorption[J]. International Journal of Biological Macromolecules, 2024, 282: 137156.
[14] Wang Y G, Wu Q, Wang X, et al. In situ electrochemical interfacial polymerization for covalent organic frameworks with tunable electrochromism[J]. Angewandte Chemie International Edition, 2024, 136(46): e202413071.
[15] Ding C H, Breunig M, Timm J, et al. Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: Preparation method and characterization[J]. Advanced Functional Materials, 2021, 31(49): 2106507.
[16] Xiong K H, Wang Y X, Zhang F L, et al. Linker length-dependent photocatalytic activity of β-ketoenamine covalent organic frameworks[J]. Applied Catalysis B: Environmental, 2023, 322: 122135.
[17] Li R, Zhang K, Yang X, et al. Construction of a carboxyl-functionalized clover-like covalent organic framework for selective adsorption of organic dyes[J]. Separation and Purification Technology, 2024, 340: 126765.
[18] Xiao C M, Yao Y Y, Guo X, et al. Ultralight and robust covalent organic framework fiber aerogels[J]. Small, 2024, 20(32): e2311881.
[19] Leng R, Sun Y C, Wang C Z, et al. Design and fabrication of hypercrosslinked covalent organic adsorbents for selective uranium extraction[J]. Environmental Science & Technology, 2023, 57(26): 9615-9626.
[20] Pang X, Shi B B, Liu Y W, et al. Confining phosphoric acid in quaternized COF channels for ultra-stable and fast anhydrous proton transport[J]. Angewandte Chemie, 2025, 137(13): e202423458.
[21] Da H J, Yang C X, Yan X P. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220.
[22] Wang X Q, Liu H R, Chen S X, et al. In situ construction of covalent organic framework membranes on polyacrylonitrile nanofibers for carbon dioxide capture[J]. ACS Applied Nano Materials, 2024, 7(9): 10911-10920.
[23] Li X, Qi Y, Yue G Z, et al. Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(VI) and Hg(II)[J]. Green Chemistry, 2019, 21(3): 649-657.
[24] Zhang J, Zhou L H, Jia Z M, et al. Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium[J]. Nanoscale, 2020, 12(47): 24044-24053.
[25] 龚文丽, 丁雁鸿, 张晨一, 等. 超分子结构纤维素基吸附剂对水体中钴离子的去除[J]. 浙江理工大学学报(自然科学版), 2021, 46(5): 604-611.
[26] Cui W R, Chen Y R, Xu W, et al. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction[J]. Separation and Purification Technology, 2023, 306: 122726.
[27] Huo L, Gao F X, Li M K, et al. Polyamide reinforced alginate-based hydrogel for efficient uranium extraction from seawater[J]. Separation and Purification Technology, 2025, 371: 133330.
[28] Ahmad Z, Jan F, Li Y, et al. Function-oriented network of bifunctional poly(amidoxime-ethyleneimine) decorated on graphene oxide for synergistically enhanced uranium extraction from seawater[J]. Separation and Purification Technology, 2025, 371: 133342.
[29] Zhang L, Sun M Y, Li X Y, et al. Uranium extraction from radioactive wastewater by NH2-MIL-125 immobilized in a double-network aerogel microsphere[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(14): 5345-5354.
[30] Sun W Y, Feng L J, Zhang J C, et al. Amidoxime group-anchored single cobalt atoms for anti-biofouling during uranium extraction from seawater[J]. Advanced Science, 2022, 9(10): 2105008.
[31] Wu M B, Liu S C, Fei J Y, et al. Natural cellulose-based microspheres decorated with amidoxime groups for decontamination of radioactive wastewater[J]. Applied Surface Science, 2022, 597: 153659.
[32] Bi R X, Liu X, Peng Z H, et al. Covalent bonding confining polyoxometalates in covalent organic frameworks for efficiently capturing uranium[J]. Separation and Purification Technology, 2024, 330: 125333.
[33] Zhang C, Wang Z Y, Ma R C, et al. Overcoming chemical dissociation processes: Electrochemical modulation of high-affinity binding sites for rapid uranium extraction from Seawater[J]. Advanced Functional Materials, 2025, 35(2): 2412712.
[34] Wang S Y, Wei G, Xie Y H, et al. Constructing nanotraps in covalent organic framework for uranium sequestration[J]. Separation and Purification Technology, 2022, 303: 122256.
[35] Li N, Yang L, Wang D, et al. High-capacity amidoxime-functionalized β-cyclodextrin/graphene aerogel for selective uranium capture[J]. Environmental Science & Technology, 2021, 55(13): 9181-9188.
[36] 牟永晓, 曹建平, 陈媛媛, 等. 水溶液中四种脱氧核苷酸与水合铀酰离子相互作用的理论计算[J]. 无机化学学报, 2019, 35(9): 1609-1618.
[37] Liu P, Liu Y R, Ruan H, et al. Amine-functionalized polyetheretherketone prepared by simple solvothermal method for high-efficiency removal of uranium[J]. Desalination, 2025, 613: 119062.