|本期目录/Table of Contents|

[1]余航,张孝惠.收敛到Euler-Mascheroni常数的改进序列[J].浙江理工大学学报,2025,53-54(自科六):872-882.
 YU Hang,ZHANG Xiaohui.Modified sequences convergent to the Euler-Mascheroni constant[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):872-882.
点击复制

收敛到Euler-Mascheroni常数的改进序列()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
872-882
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Modified sequences convergent to the Euler-Mascheroni constant
文章编号:
1673-3851(2025)11-0872-11
作者:
余航张孝惠
浙江理工大学理学院,杭州310018
Author(s):
YU Hang ZHANG Xiaohui
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
分类号:
O174.6
文献标志码:
A
摘要:
Euler-Mascheroni常数(Euler常数)的快速逼近是近年来研究者们感兴趣的问题。为了快速逼近计算
Euler常数,研究了快速收敛到Euler常数的序列及相关不等式问题。通过修改调和数项和引入连分数项,提出了两
类基于上述修改的收敛到Euler常数的新序列,证明了它们的收敛速度和相关不等式,并对一些新序列的逼近值进
行了数值计算和比较。结果表明:在新序列的基础上建立的与Euler常数相关的几个逼近不等式,扩展和改进了已
有文献中的相关逼近不等式,数值计算验证了新序列能更快速地收敛到Euler常数。所得改进序列在Euler常数的
快速计算方面较有意义。

参考文献/References:

[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables[M]. Washington: US Government Printing Office, 1964: 1046.
[2] Lagarias J C. Euler’s constant: Euler’s work and modern developments[J]. Bulletin of the American Mathematical Society, 2013, 50(4): 527-628.
[3] 马欠欠, 王伟平. 三类含r-Stirling数的无穷级数[J]. 浙江理工大学学报(自然科学版), 2022, 47(2): 256-261.
[4] Young R M. Euler’s constant[J]. The Mathematical Gazette, 1991, 75(472): 187-190.
[5] De Temple D W. A quicker convergence to Euler’s constant[J]. The American Mathematical Monthly, 1993, 100(5): 468-470.
[6] De Temple D W. A geometric look at sequences that converge to Euler’s constant[J]. The College Mathematics Journal, 2006, 37(2): 128-131.
[7] Mortici C, Vernescu A. Some new facts in discrete asymptotic analysis[J]. Mathematica Balkanica, 2007, 21(3/4): 301-308.
[8] Mortici C. On new sequences converging towards the Euler-Mascheroni constant[J]. Computers & Mathematics with Applications, 2010, 59(8): 2610-2614.
[9] Mortici C. Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant[J]. Analysis and Applications, 2010, 8(1): 99-107.
[10] Mortici C. On some Euler-Mascheroni type sequences[J]. Computers & Mathematics with Applications, 2010, 60(7): 2009-2014.
[11] Chen C P, Mortici C. New sequence converging towards the Euler-Mascheroni constant[J]. Computers & Mathematics with Applications, 2012, 64(4): 391-398.
[12] Batir N, Chen C P. Improving some sequences convergent to Euler-Mascheroni constant[J]. Proyecciones (Antofagasta), 2012, 31(1): 29-38.
[13] Chen C P, Mortici C. Limits and inequalities associated with the Euler-Mascheroni constant[J]. Applied Mathematics and Computation, 2013, 219(18): 9755-9761.
[14] 陈超平. 关于Landau常数和Euler-Mascheroni常数的渐近展开式以及Stirling级数的系数[J]. 数学年刊(A辑), 2021, 42(1): 89-104.
[15] Lu D W. Some quicker classes of sequences convergent to Euler’s constant[J]. Applied Mathematics and Computation, 2014, 232: 172-177.
[16] Lu D W, Song L X, Yu Y. Some new continued fraction approximation of Euler’s constant[J]. Journal of Number Theory, 2015, 147: 69-80.
[17] Lu D W, Song L X, Yu Y. Some quicker continued fraction approximations and inequalities towards Euler’s constant[J]. Journal of Number Theory, 2017, 175: 100-116.
[18] Yang S. On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2): 689-693.
[19] Gavrea I, Ivan M. A solution to an open problem on the Euler-Mascheroni constant[J]. Applied Mathematics and Computation, 2013, 224: 54-57.
[20] 裘松良, 蔡传宇. Gamma函数和Psi函数的单调性与凹凸性[J]. 浙江理工大学学报(自然科学版), 2018, 39(1): 108-112.
[21] 赵婉莹. 有关不完全Gamma函数的渐近展式及不等式[J]. 东北师大学报(自然科学版), 2019, 51(3): 30-33.
[22] 杜培培, 王根娣. Gamma函数的单调性与凹凸性[J]. 浙江理工大学学报(自然科学版), 2022, 47(4): 608-614.

备注/Memo

备注/Memo:
收稿日期:2023-04-07 网络出版日期:2023-06-07
基金项目:浙江省自然科学基金项目(LY22A010004);国家自然科学基金项目(11771400)
作者简介:余 航(1999— ),男,浙江衢州人,硕士研究生,主要从事复分析方面的研究。
通信作者:张孝惠,E-mail:xiaohui.zhang@zstu.edu.cn
更新日期/Last Update: 2025-11-25