[1] Siegel R L, Kratzer T B, Giaquinto A N, et al. Cancer statistics, 2025[J]. CA: A Cancer Journal for Clinicians, 2025, 75(1): 10-45.
[2] Debela D T, Muzazu S G, Heraro K D, et al. New approaches and procedures for cancer treatment: Current perspectives[J]. SAGE Open Medicine, 2021, 9: 20503121211034366.
[3] Martínez-Garay C, Djouder N. Dietary interventions and precision nutrition in cancer therapy[J]. Trends in Molecular Medicine, 2023, 29(7): 489-511.
[4] Chaturvedi S, Hoffman R M, Bertino J R. Exploiting methionine restriction for cancer treatment[J]. Biochemical Pharmacology, 2018, 154: 170-173.
[5] Cellarier E, Durando X, Vasson M P, et al. Methionine dependency and cancer treatment[J]. Cancer Treatment Reviews, 2003, 29(6): 489-499.
[6] Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals[J]. Animal Nutrition, 2018, 4(1): 11-16.
[7] Husna A U, Wang N, Cobbold S A, et al. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium[J]. Journal of Biological Chemistry, 2018, 293(24): 9506-9519.
[8] Espe M, Adam A C, Saito T, et al. Methionine: An indispensable amino acid in cellular metabolism and health of atlantic salmon[J]. Aquaculture Nutrition, 2023, 2023(1): 5706177.
[9] Lien E C, Ghisolfi L, Geck R C, et al. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT[J]. Science Signaling, 2017, 10(510): eaao6604.
[10] Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism[J]. Metabolites, 2021, 11(2): 83.
[11] Kaiser P. Methionine dependence of cancer[J]. Biomolecules, 2020, 10(4): 568.
[12] Guo H Y, Herrera H, Groce A, et al. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture[J]. Cancer Research, 1993, 53(11): 2479-2483.
[13] Wanders D, Hobson K, Ji X. Methionine restriction and cancer biology[J]. Nutrients, 2020, 12(3): 684.
[14] Tan Y, Zavala J, Xu M, et al. Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients[J]. Anticancer Research, 1996, 16(6C): 3937-3942.
[15] Fang L, Hao Y, Yu H, et al. Methionine restriction promotes cGAS activation and chromatin untethering through demethylation to enhance antitumor immunity[J]. Cancer Cell, 2023, 41(6): 1118-1133.
[16] Xue Y, Lu F, Chang Z, et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade[J]. Nature Communications, 2023, 14(1): 4758.
[17] Cheng H, Qiu Y, Xu Y, et al. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness[J]. Nature Metabolism, 2023, 5(2): 314-330.
[18] Yahyaoui R, Pérez-Frías J. Amino acid transport defects in human inherited metabolic disorders[J]. International Journal of Molecular Sciences, 2019, 21(1): 119.
[19] González B, Pajares M A, Hermoso J A, et al. Crystal structures of methionine adenosyltransferase complexed with substrates and products reveal the methionine-ATP recognition and give insights into the catalytic mechanism[J]. Journal of Molecular Biology, 2003, 331(2): 407-416.
[20] Chiang P K, Gordon R K, Tal J, et al. S-Adenosylmethionine and methylation[J]. FASEB Journal, 1996, 10(4): 471-480.
[21] Ferrazzi E, Tiso G, Di Martino D. Folic acid versus 5-methyl tetrahydrofolate supplementation in pregnancy[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2020, 253: 312-319.
[22] Zhang H F, Klein Geltink R I, Parker S J, et al. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer[J]. Trends in Cell Biology, 2022, 32(9): 800-814.
[23] Zaric B L, Obradovic M, Bajic V, et al. Homocysteine and hyperhomocysteinaemia[J]. Current Medicinal Chemistry, 2019, 26(16): 2948-2961.
[24] Glorieux C, Liu S, Trachootham D, et al. Targeting ROS in cancer: Rationale and strategies[J]. Nature Reviews Drug Discovery, 2024, 23(8): 583-606.
[25] Bae D H, Lane D J R, Jansson P J, et al. The old and new biochemistry of polyamines[J]. Biochimica et Biophysica Acta, 2018, 1862(9): 2053-2068.
[26] Niu F, Yu Y, Li Z, et al. Arginase: An emerging and promising therapeutic target for cancer treatment[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112840.
[27] Alvarez-Sanchez M E, Villalpando J L, Quintas-Granados L I, et al. Polyamine transport and synthesis in trichomonas vaginalis: Potential therapeutic targets[J]. Current Pharmaceutical Design, 2017, 23(23): 3359-3366.
[28] Pegg A E. Functions of polyamines in mammals[J]. Journal of Biological Chemistry, 2016, 291(29): 14904-14912.
[29] Soda K, Dobashi Y, Kano Y, et al. Polyamine-rich food decreases age-associated pathology and mortality in aged mice[J]. Experimental Gerontology, 2009, 44(11): 727-732.
[30] Kalač P. Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013[J]. Food Chemistry, 2014, 161: 27-39.
[31] Imada S, Khawaled S, Shin H, et al. Short-term post-fast refeeding enhances intestinal stemness via polyamines[J]. Nature, 2024, 633(8031): 895-904.
[32] Zhu Y, Zhou Z, Du X, et al. Cancer cell-derived arginine fuels polyamine biosynthesis in tumor-associated macrophages to promote immune evasion[J]. Cancer Cell, 2025, 43(6): 1045-1060.
[33] Holbert C E, Casero R A, Stewart T M. Polyamines: The pivotal amines in influencing the tumor microenvironment[J]. Discover Oncology, 2024, 15(1): 173.
[34] Schramm J, Sholler C, Menachery L, et al. Polyamine inhibition with DFMO: Shifting the paradigm in neuroblastoma therapy[J]. Journal of Clinical Medicine, 2025, 14(4): 1068.
[35] Zhu G, Xie Y, Wang J, et al. Multifunctional copper-phenolic nanopills achieve comprehensive polyamines depletion to provoke enhanced pyroptosis and cuproptosis for cancer immunotherapy[J]. Advanced Materials, 2024, 36(45): 2409066.
[36] Murthy D, Attri K S, Shukla S K, et al. Cancer-associated fibroblast-derived acetate promotes pancreatic cancer development by altering polyamine metabolism via the ACSS2-SP1-SAT1 axis[J]. Nature Cell Biology, 2024, 26(4): 613-627.
[37] Pasamontes A, Garcia-Vallve S. Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes[J]. BMC Bioinformatics, 2006, 7(1): 257.
[38] Jonsson W O, Margolies N S, Anthony T G. Dietary sulfur amino acid restriction and the integrated stress response: Mechanistic insights[J]. Nutrients, 2019, 11(6): 1349.
[39] Pettit A P, Jonsson W O, Bargoud A R, et al. Dietary methionine restriction regulates liver protein synthesis and gene expression independently of eukaryotic initiation factor 2 phosphorylation in mice[J]. Journal of Nutrition, 2017, 147(6): 1031-1040.
[40] Nichenametla S N, Mattocks D A L, Malloy V L, et al. Sulfur amino acid restriction-induced changes in redox-sensitive proteins are associated with slow protein synthesis rates[J]. Annals of the New York Academy of Sciences, 2018, 1418(1): 80-94.
[41] Dai X, Ren T, Zhang Y, et al. Methylation multiplicity and its clinical values in cancer[J]. Expert Reviews in Molecular Medicine, 2021, 23: e2.
[42] Klutstein M, Nejman D, Greenfield R, et al. DNA methylation in cancer and aging[J]. Cancer Research, 2016, 76(12): 3446-3450.
[43] Tassinari V, Jia W, Chen W L, et al. The methionine cycle and its cancer implications[J]. Oncogene, 2024, 43(48): 3483-3488.
[44] Deshmukh M G, Brooks V T, Roy S F, et al. DNA methylation in melanoma immunotherapy: Mechanisms and therapeutic opportunities[J]. Clinical Epigenetics, 2025, 17(1): 71.
[45] Fu Y, Zhang X, Liu X, et al. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 81.
[46] Meng C, Lin K, Shi W, et al. Histone methyltransferase ASH1L primes metastases and metabolic reprogramming of macrophages in the bone niche[J]. Nature Communications, 2025, 16: 4681.
[47] Mentch S J, Mehrmohamadi M, Huang L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism[J]. Cell Metabolism, 2015, 22(5): 861-873.
[48] Li T, Tan Y T, Chen Y X, et al. Methionine deficiency facilitates antitumour immunity by altering m6A methylation of immune checkpoint transcripts[J]. Gut, 2023, 72(3): 501-511.
[49] Yu A, Fu L, Jing L, et al. Methionine-driven YTHDF1 expression facilitates bladder cancer progression by attenuating RIG-I-modulated immune responses and enhancing the eIF5B-PD-L1 axis[J]. Cell Death and Differentiation, 2025, 32(4): 776-791.
[50] Fan Y, Wang Y, Dan W, et al. PRMT5-mediated arginine methylation stabilizes GPX4 to suppress ferroptosis in cancer[J]. Nature Cell Biology, 2025, 27(4): 641-653.
[51] Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases[J]. Amino Acids, 2017, 49(12): 2091-2098.
[52] Xia C, Peng P, Zhang W, et al. Methionine-SAM metabolism-dependent ubiquinone synthesis is crucial for ROS accumulation in ferroptosis induction[J]. Nature Communications, 2024, 15: 8971.
[53] Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer[J]. Protein & Cell, 2022, 13(12): 877-919.
[54] Yamamoto J, Han Q, Simon M, et al. Methionine restriction: Ready for prime time in the cancer clinic?[J]. Anticancer Research, 2022, 42(2): 641-644.
[55] Zhang L, Freeman L E B, Nakamura J, et al. Formaldehyde and leukemia: Epidemiology, potential mechanisms, and implications for risk assessment[J]. Environmental and Molecular Mutagenesis, 2010, 51(3): 181-191.
[56] Juliusson G, Hough R. Leukemia[J]. Progress in Tumor Research, 2016, 43: 87-100.
[57] Meyer C, Larghero P, Almeida Lopes B, et al. The KMT2A recombinome of acute leukemias in 2023[J]. Leukemia, 2023, 37(5): 988-1005.
[58] Du W, Huang Y, Chen X, et al. Discovery of a PROTAC degrader for METTL3-METTL14 complex[J]. Cell Chemical Biology, 2024, 31(1): 177-183.
[59] Yusuf R Z, Saez B, Sharda A, et al. Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers[J]. Blood, 2020, 136(11): 1303-1316.
[60] Cunningham A, Oudejans L L, Geugien M, et al. The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia[J]. Blood Advances, 2024, 8(1): 56-69.
[61] Cunningham A, Erdem A, Alshamleh I, et al. Dietary methionine starvation impairs acute myeloid leukemia progression[J]. Blood, 2022, 140(19): 2037-2052.
[62] Forte D, Pellegrino R M, Falvo P, et al. Parallel single-cell metabolic analysis and extracellular vesicle profiling reveal vulnerabilities with prognostic significance in acute myeloid leukemia[J]. Nature Communications, 2024, 15(1): 10878.
[63] 赫玉杰, 余思熟, 张斌, 等. 甲硫氨酸限制对人急性白血病细胞增殖、周期及凋亡的影响[J]. 中国实验血液学杂志, 2023, 31(5): 1290-1295.
[64] Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040[J]. Translational Oncology, 2021, 14(10): 101174.
[65] Shreenivas A V, Kato S, Hu J, et al. Carcinoma of unknown primary: Molecular tumor board-based therapy[J]. CA: A Cancer Journal for Clinicians, 2022, 72(6): 510-523.
[66] Monzel A S, Enríquez J A, Picard M. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction[J]. Nature Metabolism, 2023, 5(4): 546-562.
[67] Nicken P, Empl M T, Gerhard D, et al. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c3T3 cell transformation assay[J]. Food and Chemical Toxicology, 2016, 95: 196-202.
[68] Yue T, Li J, Zhu J, et al. Hydrogen sulfide creates a favorable immune microenvironment for colon cancer[J]. Cancer Research, 2023, 83(4): 595-612.
[69] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[70] Papafragkos I, Verginis P. Salty Treg cells get out of balance[J]. Cell Metabolism, 2023, 35(2): 228-230.
[71] Shokoohi M, Sedaghatshoar S, Arian H, et al. Genetic advancements in breast cancer treatment: A review[J]. Discover Oncology, 2025, 16(1): 127.
[72] Liu C C, Chen L, Cai Y W, et al. Targeting EMSY-mediated methionine metabolism is a potential therapeutic strategy for triple-negative breast cancer[J]. Cell Reports Medicine, 2024, 5(2): 101396.
[73] Strekalova E, Malin D, Rajanala H, et al. Preclinical breast cancer models to investigate metabolic priming by methionine restriction[J]. Methods in Molecular Biology, 2019, 1866: 61-73.
[74] Malin D, Lee Y, Chepikova O, et al. Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells by inducing thioredoxin reductase[J]. Breast Cancer Research and Treatment, 2021, 190(3): 373-387.
[75] Shen G, Liu Z, Wang M, et al. Neoadjuvant apatinib addition to sintilimab and carboplatin-taxane based chemotherapy in patients with early triple-negative breast cancer: The phase 2 NeoSAC trial[J]. Signal Transduction and Targeted Therapy, 2025, 10(1): 41.
[76] Tan Z, Ge C, Feng D, et al. The interleukin-6/signal transducer and activator of transcription-3/cystathionine γ-lyase axis deciphers the transformation between the sensitive and resistant phenotypes of breast cancer cells[J]. Drug Metabolism and Disposition, 2021, 49(11): 985-994.
[77] 瞿旻, 高旭. 2022年全球及中国前列腺癌流行状况分析[J]. 海军军医大学学报, 2025, 46(2): 229-233.
[78] Sekhoacha M, Riet K, Motloung P, et al. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches[J]. Molecules, 2022, 27(17): 5730.
[79] Johnson J R, Woods-Burnham L, Hooker S E, et al. Genetic Contributions to Prostate Cancer Disparities in Men of West African Descent[J]. Frontiers in Oncology, 2021, 11: 770500.
[80] Ahmad F, Cherukuri M K, Choyke P L. Metabolic reprogramming in prostate cancer[J]. British Journal of Cancer, 2021, 125(9): 1185-1196.
[81] AlHussein AlAwamlh B, Wallis C J D, Penson D F, et al. Functional outcomes after localized prostate cancer treatment[J]. Journal of the American Medical Association, 2024, 331(4): 302-317.
[82] Lu S, Chen G L, Ren C, et al. Methionine restriction selectively targets thymidylate synthase in prostate cancer cells[J]. Biochemical Pharmacology, 2003, 66(5): 791-800.
[83] Li F, Dai P, Shi H, et al. LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer[J]. Cell Research, 2025, 35(1): 59-71.
[84] Cacciatore A, Shinde D, Musumeci C, et al. Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer[J]. Nature Communications, 2024, 15: 6672.
[85] Stone E, Paley O, Hu J, et al. De novo engineering of a human cystathionine-γ-lyase for systemic (L)-Methionine depletion cancer therapy[J]. ACS Chemical Biology, 2012, 7(11): 1822-1829.
[86] Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer[J]. British Journal of Cancer, 2024, 131(8): 1250-1262.