|本期目录/Table of Contents|

[1]赵光宇,李丹婷,闫志斌.膜联蛋白A1在恶性肿瘤中的作用机制及其靶向药物研发进展综述[J].浙江理工大学学报,2025,53-54(自科六):844-853.
 ZHAO Guangyu,LI Danting,YAN Zhibin.A review of the mechanism of annexin A1 in malignant tumors and the progress of targeted drug development[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):844-853.
点击复制

膜联蛋白A1在恶性肿瘤中的作用机制及其靶向药物研发进展综述
()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
844-853
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
A review of the mechanism of annexin A1 in malignant tumors and the progress of targeted drug development
文章编号:
1673-3851(2025)11-0844-10
作者:
赵光宇李丹婷闫志斌
浙江理工大学生命科学与医药学院,杭州310018
Author(s):
ZHAO Guangyu LI Danting YAN Zhibin
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
膜联蛋白 A1恶性肿瘤肿瘤耐药肿瘤免疫靶向治疗
分类号:
Q291
文献标志码:
A
摘要:
恶性肿瘤是全球主要死亡原因之一,其侵袭性、转移性、肿瘤微环境引发的耐药性和脱靶效应等问题,
严重制约临床治疗效果。膜联蛋白 A1(AnnexinA1,ANXA1)通过甲酰肽受体调控细胞增殖、凋亡及炎症反应等生
物学过程,近年来研究发现 ANXA1表达失调与多种肿瘤的耐药性、细胞恶性转化及转移密切相关。文章综述了
ANXA1的生物学功能,解析其在肿瘤发生发展中的调控机制,探讨其抗肿瘤免疫作用,并梳理靶向 ANXA1的药物
研发进展,旨在揭示其作为新型治疗靶点的潜在价值,并为靶向 ANXA1的肿瘤精准治疗提供科学依据。

参考文献/References:

[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263.
[2] Zhang X, Li X, Li X, et al. ANXA1 silencing increases the sensitivity of cancer cells to low-concentration arsenic trioxide treatment by inhibiting ERK MAPK activation[J]. Tumori, 2015, 101(4): 360-367.
[3] Bist P, Phua Q H, Shu S, et al. Annexin-A1 controls an ERK-RhoA-NFκB activation loop in breast cancer cells[J]. Biochemical and Biophysical Research Communications, 2015, 461(1): 47-53.
[4] Chen Y, Zhu S, Liu T, et al. Epithelial cells activate fibroblasts to promote esophageal cancer development[J]. Cancer Cell, 2023, 41(5): 903-918.e8.
[5] Guo C, Liu S, Sun M Z. Potential role of Anxa1 in cancer[J]. Future Oncology, 2013, 9(11): 1773-1793.
[6] Araújo T G, Mota S T S, Ferreira H S V, et al. Annexin A1 as a regulator of immune response in cancer[J]. Cells, 2021, 10(9): 2245.
[7] Rosengarth A, Luecke H. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1[J]. Journal of Molecular Biology, 2003, 326(5): 1317-1325.
[8] Boudhraa Z, Bouchon B, Viallard C, et al. Annexin A1 localization and its relevance to cancer[J]. Clinical Science, 2016, 130(4): 205-220.
[9] D’Acquisto F, Merghani A, Lecona E, et al. Annexin-1 modulates T-cell activation and differentiation[J]. Blood, 2007, 109(3): 1095-1102.
[10] Fankhaenel M, Hashemi F S G, Mourao L, et al. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis[J]. Nature Communications, 2023, 14(1): 151.
[11] White I I Z B, Nair S, Bredel M. The role of annexins in central nervous system development and disease[J]. Journal of Molecular Medicine, 2024, 102(6): 751-760.
[12] McArthur S, Yazid S, Christian H, et al. Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization[J]. Federation of American Societies for Experimental Biology Journal, 2009, 23(11): 4000-4010.
[13] Ernst S, Lange C, Wilbers A, et al. An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family[J]. Journal of Immunology, 2004, 172(12): 7669-7676.
[14] Li L, Wang B, Zhao S, et al. The role of ANXA1 in the tumor microenvironment[J]. International Immunopharmacology, 2024, 131: 111854.
[15] Xiong X, Zheng L W, Ding Y, et al. Breast cancer: Pathogenesis and treatments[J]. Signal Transduction and Targeted Therapy, 2025, 10(1): 49.
[16] Sobral-Leite M, Wesseling J, Smit V T, et al. Annexin A1 expression in a pooled breast cancer series: Association with tumor subtypes and prognosis[J]. BioMed Central Medicine, 2015, 13: 156.
[17] Huang H, Wan J, Ao X, et al. ECM1 and ANXA1 in urinary extracellular vesicles serve as biomarkers for breast cancer[J]. Frontiers in Oncology, 2024, 14: 1408492.
[18] Okano M, Oshi M, Butash A L, et al. Triple-negative breast cancer with high levels of annexin A1 expression is associated with mast cell infiltration, inflammation, and angiogenesis[J]. International Journal of Molecular Sciences, 2019, 20(17): 4197.
[19] Vecchi L, Alves Pereira Zóz M, Goss Santos T, et al. Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo[J]. Biochimica et Biophysica Acta - Molecular Cell Research, 2018, 1865(9): 1368-1382.
[20] De Graauw M, Van Miltenburg M H, Schmidt M K, et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6340-6345.
[21] Pearanpan L, Nordin F J, Siew E L, et al. A cell-based systematic review on the role of annexin A1 in triple-negative breast cancers[J]. International Journal of Molecular Sciences, 2022, 23(15): 8256.
[22] Bist P, Leow S C, Phua Q H, et al. Annexin-1 interacts with NEMO and RIP1 to constitutively activate IKK complex and NF-κB: Implication in breast cancer metastasis[J]. Oncogene, 2011, 30(28): 3174-3185.
[23] Okano M, Kumamoto K, Saito M, et al. Upregulated annexin A1 promotes cellular invasion in triple-negative breast cancer[J]. Oncology Reports, 2015, 33(3): 1064-1070.
[24] Song L, Li H, Ma R R, et al. E2F1-initiated transcription of PRSS22 promotes breast cancer metastasis by cleaving ANXA1 and activating FPR2/ERK signaling pathway[J]. Cell Death & Disease, 2022, 13(11): 982.
[25] Sun R, He J, Xiang Q, et al. NTF4 plays a dual role in breast cancer in mammary tumorigenesis and metastatic progression[J]. International Journal of Biological Sciences, 2023, 19(2): 641-657.
[26] Foo S L, Sachaphibulkij K, Lee C L Y, et al. Breast cancer metastasis to brain results in recruitment and activation of microglia through annexin-A1/formyl peptide receptor signaling[J]. Breast Cancer Research and Treatment, 2022, 24(1): 25.
[27] Berns K, Sonnenblick A, Gennissen A, et al. Loss of ARID1A activates ANXA1, which serves as a predictive biomarker for Trastuzumab resistance[J]. Clinical Cancer Research, 2016, 22(21): 5238-5248.
[28] Tang L, Chen Y, Chen H, et al. DCST1-AS1 promotes TGF-β induced epithelial-mesenchymal transition and enhances chemoresistance in triple-negative breast cancer cells via ANXA1[J]. Frontiers in Oncology, 2020, 10: 280.
[29] Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. Journal of the National Cancer Center, 2024, 4(1): 47-53.
[30] Fang Y, Guan X, Cai T, et al. Knockdown of ANXA1 suppresses the biological behavior of human NSCLC cells in vitro[J]. Molecular Medicine Reports, 2016, 13(5): 3858-3866.
[31] Guan X, Fang Y, Long J, et al. Annexin 1-nuclear factor-κB-microRNA-26a regulatory pathway in the metastasis of non-small cell lung cancer[J]. Thoracic Cancer, 2019, 10(4): 665-675.
[32] Chen P, Min J, Wu H, et al. Annexin A1 is a potential biomarker of bone metastasis in small cell lung cancer[J]. Oncology Letters, 2021, 21(2): 141.
[33] Deng C, Liu X, Zhang C, et al. ANXA1-GSK3β interaction and its involvement in NSCLC metastasis[J]. Acta Biochimica et Biophysica Sinica, 2021, 53(7): 912-924.
[34] Xu S, Tang L, Li X, et al. Immunotherapy for glioma: Current management and future application[J]. Cancer Letters, 2020, 476: 1-12.
[35] Lin Z, Wen M, Yu E, et al. ANXA1 as a prognostic and immune microenvironmental marker for gliomas based on transcriptomic analysis and experimental validation[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 659080.
[36] Zhang D, Wang W, Zhou H, et al. ANXA1: An important independent prognostic factor and molecular target in glioma[J]. Frontiers in Genetics, 2022, 13: 851505.
[37] Fan Y, Chen Y, Run X, et al. Comprehensive analysis and experiments identified ANXA1 as an unfavorable prognosticator in glioma[J]. Translational Oncology, 2025, 53: 102286.
[38] Zheng Y, Jiang H, Yang N, et al. Glioma-derived ANXA1 suppresses the immune response to TLR3 ligands by promoting an anti-inflammatory tumor microenvironment[J]. Cellular & Molecular Immunology, 2024, 21(1): 47-59.
[39] Chen H, Chen X, Zhang Z, et al. Extracellular vesicles-transferred SBSN drives glioma aggressiveness by activating NF-κB via ANXA1-dependent ubiquitination of NEMO[J]. Oncogene, 2022, 41(49): 5253-5265.
[40] Cheng S X, Tu Y, Zhang S. FOXM1 promotes glioma cells progression by up-regulating ANXA1 expression[J]. Plos One, 2013, 8(8): e72376.
[41] Cheng T Y, Wu M S, Lin J T, et al. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway[J]. Cancer, 2012, 118(23): 5757-5767.
[42] Zhao L, Wang W, Niu P, et al. The molecular mechanisms of CTHRC1 in gastric cancer by integrating TCGA, GEO and GSA datasets[J]. Frontiers in Genetics, 2022, 13: 900124.
[43] Xu L, Zhang F, Yu B, et al. PRMT6 promotes the immune evasion of gastric cancer by upregulating ANXA1[J]. Critical Reviews in Eukaryotic Gene Expression, 2024, 34(5): 69-79.
[44] Ren J, Hu Z, Niu G, et al. Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR[J]. Federation of American Societies for Experimental Biology Journal, 2023, 37(3): e22790.
[45] Yu G, Wang J, Chen Y, et al. Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin A1 expression and nodal metastasis in gastric cancer[J]. Clinical & Experimental Metastasis, 2008, 25(7): 695-702.
[46] Niinivirta M, Enblad G, Edqvist P H, et al. Tumoral ANXA1 is a predictive marker for sunitinib treatment of renal cancer patients[J]. Journal of Cancer, 2017, 8(19): 3975-3983.
[47] Wang L H, Cao B, Li Y L, et al. Potential prognostic and therapeutic value of ANXA8 in renal cell carcinoma: Based on the comprehensive analysis of annexins family[J]. BioMed Central Cancer, 2023, 23(1): 674.
[48] Xiong W, Zhang B, Yu H, et al. RRM2 regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway[J]. Advanced Science, 2021, 8(18): e2100881.
[49] Wang Y, Peng M, Zhong Y, et al. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis[J]. Oncogene, 2023, 42(13): 952-966.
[50] Li W, Ye K, Li X, et al. YTHDC1 is downregulated by the YY1/HDAC2 complex and controls the sensitivity of ccRCC to sunitinib by targeting the ANXA1-MAPK pathway[J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 250.
[51] Herrera-López E E, Guerrero-Escalera D, Aguirre-Maldonado I, et al. Annexins A2 and A5 are potential early biomarkers of hepatocarcinogenesis[J]. Scientific Reports, 2023, 13(1): 6948.
[52] Wu W, Jia G, Chen L, et al. Analysis of the expression and prognostic value of annexin family proteins in bladder cancer[J]. Frontiers in Genetics, 2021, 12: 731625.
[53] Zhao X, Ma W, Li X, et al. ANXA1 enhances tumor proliferation and migration by regulating epithelial-mesenchymal transition and IL-6/JAK2/STAT3 pathway in papillary thyroid carcinoma[J]. Journal of Cancer, 2021, 12(5): 1295-1306.
[54] Oshi M, Tokumaru Y, Mukhopadhyay S, et al. Annexin A1 expression is associated with epithelial-mesenchymal transition (EMT), cell proliferation, prognosis, and drug response in pancreatic cancer[J]. Cells, 2021, 10(3): 653.
[55] Liang Z, Li X. Identification of ANXA1 as a potential prognostic biomarker and correlating with immune infiltrates in colorectal cancer[J]. Autoimmunity, 2021, 54(2): 76-87.
[56] Akhtar J, Priya R, Jain V, et al. Immunoproteomics approach revealed elevated autoantibody levels against ANXA1 in early stage gallbladder carcinoma[J]. BioMed Central Cancer, 2020, 20(1): 1175.
[57] Wang X, Shao G, Hong X, et al. Targeting annexin A1 as a druggable player to enhance the anti-tumor role of honokiol in colon cancer through autophagic pathway[J]. Pharmaceuticals, 2023, 16(1): 70.
[58] Belvedere R, Bizzarro V, Forte G, et al. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of formyl peptide receptor pathway[J]. Scientific Reports, 2016, 6: 29660.
[59] Bizzarro V, Belvedere R, Migliaro V, et al. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness[J]. Cell Adhesion & Migration, 2017, 11(3): 247-260.
[60] Geary L A, Nash K A, Adisetiyo H, et al. CAF-secreted annexin A1 induces prostate cancer cells to gain stem cell-like features[J]. Molecular Cancer Research, 2014, 12(4): 607-621.
[61] Li P, Li L, Li Z, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway[J]. Cancer Cell International, 2022, 22(1): 7.
[62] Sandri S, Hebeda C B, Broering M F, et al. Role of annexin A1 secreted by neutrophils in melanoma metastasis[J]. Cells, 2023, 12(3): 425.
[63] Delorme S, Privat M, Sonnier N, et al. New insight into the role of ANXA1 in melanoma progression: Involvement of stromal expression in dissemination[J]. American Journal of Cancer Research, 2021, 11(4): 1600-1615.
[64] Li Q, Liu W, Wang Z, et al. Exosomal ANXA1 derived from thyroid cancer cells is associated with malignant transformation of human thyroid follicular epithelial cells by promoting cell proliferation[J]. International Journal of Oncology, 2021, 59(6): 104.
[65] Shao G, Wang X, Zheng Y, et al. Identification of ANXA1 as a novel upstream negative regulator of notch1 function in AML[J]. Advanced Science, 2024, 11(48): e2409726.
[66] Onozawa H, Saito M, Saito K, et al. Annexin A1 is involved in resistance to 5-FU in colon cancer cells[J]. Oncology Reports, 2017, 37(1): 235-240.
[67] Cheng B, Li L, Wu Y, et al. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment[J]. Cell & Bioscience, 2023, 13(1): 211.
[68] Yang S, Wang G, Chen J, et al. Myeloma cell-intrinsic ANXA1 elevation and T cell dysfunction contribute to BCMA-negative relapse after CAR-T therapy[J]. Molecular Therapy, 2025, 33(7): 3375-3391.
[69] Heinhuis K M, Ros W, Kok M, et al. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors[J]. Annals of Oncology, 2019, 30(2): 219-235.
[70] Van Weverwijk A, De Visser K E. Mechanisms driving the immunoregulatory function of cancer cells[J]. Nature Reviews Cancer, 2023, 23(4): 193-215.
[71] Morad G, Helmink B A, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2021, 184(21): 5309-5337.
[72] Xiao D, Zeng T, Zhu W, et al. ANXA1 promotes tumor immune evasion by binding PARP1 and upregulating STAT3-induced expression of PD-L1 in multiple cancers[J]. Cancer Immunology Research, 2023, 11(10): 1367-1383.
[73] Kroemer G, Galassi C, Zitvogel L, et al. Immunogenic cell stress and death[J]. Nature Immunology, 2022, 23(4): 487-500.
[74] Galluzzi L, Guilbaud E, Schmidt D, et al. Targeting immunogenic cell stress and death for cancer therapy[J]. Nature Reviews Drug Discovery, 2024, 23(6): 445-460.
[75] Fucikova J, Kepp O, Kasikova L, et al. Detection of immunogenic cell death and its relevance for cancer therapy[J]. Cell Death & Disease, 2020, 11(11): 1013.
[76] Baracco E E, Stoll G, Van Endert P, et al. Contribution of annexin A1 to anticancer immunosurveillance[J]. Oncoimmunology, 2019, 8(11): e1647760.
[77] Li M, Yang Y, Xiong L, et al. Metabolism, metabolites, and macrophages in cancer[J]. Journal of Hematology & Oncology, 2023, 16(1): 80.
[78] Qian Z, Fan W, Meng F, et al. Molecular characterization and clinical relevance of ANXA1 in gliomas via 1,018 Chinese cohort patients[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 777182.
[79] Moraes L A, Kar S, Foo S L, et al. Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment[J]. Scientific Reports, 2017, 7(1): 17925.
[80] Novizio N, Belvedere R, Pessolano E, et al. ANXA1 contained in EVs regulates macrophage polarization in tumor microenvironment and promotes pancreatic cancer progression and metastasis[J]. International Journal of Molecular Sciences, 2021, 22(20): 11018.
[81] Cioni B, Ratti S, Piva A, et al. JMJD6 shapes a pro-tumor microenvironment via ANXA1-dependent macrophage polarization in breast cancer[J]. Molecular Cancer Research, 2023, 21(6): 614-627.
[82] Bai F, Zhang P, Fu Y, et al. Targeting ANXA1 abrogates Treg-mediated immune suppression in triple-negative breast cancer[J]. Journal for Immunotherapy of Cancer, 2020, 8(1): e000169.
[83] Hou Z, Lu F, Lin J, et al. Loss of annexin A1 in macrophages restrains efferocytosis and remodels immune microenvironment in pancreatic cancer by activating the cGAS/STING pathway[J]. Journal for Immunotherapy of Cancer, 2024, 12(9): e009318.
[84] Zheng L, Li L, Wang B, et al. Annexin A1 affects tumor metastasis through epithelial-mesenchymal transition: A narrative review[J]. Translational Cancer Research, 2022, 11(12): 4416-4433.
[85] Gao K, Li X, Luo S, et al. An overview of the regulatory role of annexin A1 in the tumor microenvironment and its prospective clinical application (review)[J]. International Journal of Oncology, 2024, 64(5): 51.
[86] Hein T, Krammer P H, Weyd H. Molecular analysis of annexin expression in cancer[J]. BioMed Central Cancer, 2022, 22(1): 994.
[87] Gastardelo T S, Cunha B R, Raposo L S, et al. Inflammation and cancer: Role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma[J]. Plos One, 2014, 9(12): e111317.
[88] Li N, Yan P, Guo L, et al. The small molecule peptide ANXA114-26 inhibits ovarian cancer cell proliferation and reverses cisplatin resistance by binding to the formyl peptide receptors receptor[J]. Journal of Cell Communication and Signaling, 2024, 19(1): e12058.
[89] Feng J, Lu S S, Xiao T, et al. ANXA1 binds and stabilizes EphA2 to promote nasopharyngeal carcinoma growth and metastasis[J]. Cancer Research, 2020, 80(20): 4386-4398.
[90] Feng J, Xiao T, Lu S S, et al. ANXA1-derived peptides suppress gastric and colon cancer cell growth by targeting EphA2 degradation[J]. International Journal of Oncology, 2020, 57(5): 1203-1213.
[91] Yu Z Z, Liu Y Y, Zhu W, et al. ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers[J]. Journal for Immunotherapy of Cancer, 2023, 11(3): e006345.
[92] Al-Ali H N, Crichton S J, Fabian C, et al. A therapeutic antibody targeting annexin-A1 inhibits cancer cell growth in vitro and in vivo[J]. Oncogene, 2024, 43(8): 608-614.

相似文献/References:

[1]卢鹏,纪猛,王皓,等.自然杀伤细胞免疫疗法在恶性肿瘤治疗中的研究进展[J].浙江理工大学学报,2022,47-48(自科六):915.
 LU Peng,JI Meng,WANG Hao,et al.Progress of natural killer cell immunotherapy in the treatment of malignant tumors[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科六):915.

备注/Memo

备注/Memo:
收稿日期:2025-06-07 网络出版日期:2025-09-05
基金项目:国家自然科学基金项目(81770176)
作者简介:赵光宇(1998— ),男,贵州贵阳人,硕士研究生,主要从事抗肿瘤药物研发方面的研究。
通信作者:闫志斌,E-mail:yanzhb15@zstu.edu.cn
更新日期/Last Update: 2025-11-25