|本期目录/Table of Contents|

[1]易舒政,陈建军. 锆硅杂化树脂原位裂解制备莫来石纤维三维骨架多孔陶瓷 [J].浙江理工大学学报,2025,53-54(自科六):786-794.[doi:10.3969/j.issn.1673-3851(n).2025.06.005]
 YI Shuzheng,CHEN Jianjun.Preparation of mullite fiber three-dimensional skeleton porous ceramics by in situ pyrolysis of zirconium-silicon hybrid resin[J].Journal of Zhejiang Sci-Tech University,2025,53-54(自科六):786-794.[doi:10.3969/j.issn.1673-3851(n).2025.06.005]
点击复制

锆硅杂化树脂原位裂解制备莫来石纤维三维骨架多孔陶瓷
()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第53-54卷
期数:
2025年自科第六期
页码:
786-794
栏目:
出版日期:
2025-11-10

文章信息/Info

Title:
Preparation of mullite fiber three-dimensional skeleton porous ceramics by in situ pyrolysis of zirconium-silicon hybrid resin
文章编号:
1673-3851(2025)11-0786-09
作者:
易舒政陈建军
浙江理工大学材料科学与工程学院,杭州310018
Author(s):
YI Shuzheng CHEN Jianjun
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
锆硅杂化树脂莫来石纤维纤维多孔陶瓷聚硅氧烷隔热材料
分类号:
TB34
DOI:
10.3969/j.issn.1673-3851(n).2025.06.005
文献标志码:
A
摘要:
针对纤维多孔陶瓷存在有机硅树脂黏结剂耐温性差,以及压力浸渍法导致样品内部纤维呈定向层状排布问题,采用正丙醇锆改性有机硅树脂制备锆硅杂化树脂黏结剂,通过抽滤法将杂化树脂与通过冷冻干燥法制备的莫来石纤维三维骨架复合,并在管式炉中高温裂解,制得莫来石纤维多孔陶瓷;采用傅里叶变换红外光谱、X射线光电子能谱、扫描电子显微镜以及X射线衍射仪对锆硅杂化树脂的结构、形貌和物相组成进行表征。通过X射线衍射仪、阿基米德排水法、万能试验机、热常数分析仪、红外热成像仪和扫描电子显微镜对莫来石纤维多孔陶瓷性能和微观结构进行表征。结果表明:与未掺锆(Zr)元素的有机硅树脂相比,Zr元素的引入使有机硅树脂的耐热性显著提高,锆硅摩尔比为1∶10的锆硅杂化树脂在1000℃氩气环境下的残余质量分数由原来的61.13%提高到77.15%;制备的莫来石纤维多孔陶瓷具有低密度(0.325~0.339g/cm3)、高孔隙率(81.8%~85.2%)、低热导率(0.063~0.070W/mK)特点;该陶瓷的抗压强度随着处理温度的升高呈先升高后降低的变化趋势,1200℃时样品的抗压强度最高为0.73MPa;当处理温度升高至1400℃时,样品内部莫来石纤维晶粒长大,纤维强度下降。该研究可为制备结构均匀且高温热稳定性良好的莫来石纤维多孔陶瓷提供参考。

参考文献/References:

[1] Wang Z Y, Xu X J, Xu T F, et al. Porous mullite fiber-based ceramics inspired by biomimetic natural pinewood[J]. Ceramics International, 2024, 50(1): 584-592.
[2] Dong X Y, Chua B W, Li T, et al. Multi-directional freeze casting of porous ceramics with bone-inspired microstructure[J]. Materials & Design, 2022, 224: 111344.
[3] Zhang P, Zhao S, Chen G B, et al. Preparation of fibrous three-dimensional porous materials and their research progress in the field of stealth protection[J]. Nanomaterials, 2024, 14(12): 1003.
[4] Zou J, Zhang G J, Kan Y M. Formation of tough interlocking microstructure in ZrB2-SiC-based ultrahigh-temperature ceramics by pressureless sintering[J]. Journal of Materials Research, 2009, 24(7): 2428-2434.
[5] 罗萌, 向阳, 彭志航, 等. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[6] Hu X X, Yang L N, Li L Y, et al. Freeze casting of composite system with stable fiber network and movable particles[J]. Journal of the European Ceramic Society, 2016, 36(16): 4147-4153.
[7] Xian L, Zhang Y, Wu Y J, et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceramics International, 2020, 46(2): 1869-1875.
[8] Zhang Y, Wu Y J, Yang X K, et al. High-strength thermal insulating mullite nanofibrous porous ceramics[J]. Journal of the European Ceramic Society, 2020, 40(5): 2090-2096.
[9] Zhou N, Zhao M N, Xu B S, et al. Effects of fiber aspect ratio and fabrication temperature on the microstructure and mechanical properties of elastic fibrous porous ceramics by press-filtration method[J]. Ceramics International, 2023, 49(7): 11038-11046.
[10] Zhang R B, Hou X B, Ye C S, et al. Fabrication and properties of fibrous porous mullite-zirconia fiber networks with a quasi-layered structure[J]. Journal of the European Ceramic Society, 2016, 36(14): 3539-3544.
[11] Yang Y L, Fu W Y, Chen X X, et al. Fabrication of homogeneous mullite-based fiber porous ceramics with high strength and porosity[J]. Journal of the European Ceramic Society, 2022, 42(15): 7219-7227.
[12] Dong X, Lv H Y, Sui G F, et al. Synthesis and properties of lightweight fibrous ceramics with a 3D skeleton structure prepared by infiltration[J]. Materials Science and Engineering: A, 2015, 635: 43-49.
[13] Zhang R B, Ye C S, Hou X B, et al. Microstructure and properties of lightweight fibrous porous mullite ceramics prepared by vacuum squeeze moulding technique[J]. Ceramics International, 2016, 42(13): 14843-14848.
[14] Dong X, Chen Z, Guo A R, et al. Mechanical and interfacial behavior of single mullite fiber and mullite fiber-based porous ceramics[J]. Ceramics International, 2018, 44(12): 14446-14456.
[15] Zang W J, Jia T, Dong X, et al. Preparation of homogeneous mullite-based fibrous ceramics by starch consolidation[J]. Journal of the American Ceramic Society, 2018, 101(7): 3138-3147.
[16] 李玲玉. 莫来石纤维基多孔陶瓷制备工艺及性能优化研究[D]. 天津: 天津大学, 2018: 20-23.
[17] Xu Y Y, Long J, Zhang R Z, et al. Greatly improving thermal stability of silicone resins by modification with POSS[J]. Polymer Degradation and Stability, 2020, 174: 109082.
[18] Du Y P, Xia Y, Luo Z H, et al. An addition-curable hybrid phenolic resin containing silicon and boron with improved thermal stability[J]. Polymer Degradation and Stability, 2021, 189: 109599.
[19] Hao Z F, Zhang J, Wu Y H, et al. Synthesis and thermal stability properties of boron-doped silicone resin[J]. Journal of Applied Polymer Science, 2014, 131(20): 40934.
[20] Huang Y F, Feng Y K, Sun X J, et al. Preparation of ZrO2/silicone hybrid materials for LED encapsulation via in situ Sol-gel reaction[J]. Polymers for Advanced Technologies, 2019, 30(7): 1818-1824.
[21] Qiu J D, Lai X J, Li H Q, et al. Synthesis of zirconium-containing polyhedral oligometallasilsesquioxane as an efficient thermal stabilizer for silicone rubber[J]. Polymers, 2018, 10(5): 520.
[22] Chen J J, Fu Z E, Huang H C, et al. A facile route to prepare homogeneous silicone resin doped with titanium[J]. Journal of Applied Polymer Science, 2019, 136(32): 47834.
[23] Hu X C, Yao B L, Liu J, et al. Preparation and properties of high refractive index UV-cured titanium hybrid optical materials[J]. Materials Letters, 2020, 265: 127466.
[24] Gu Y R, Li T H, Zhao L, et al. Zirconium-modified organosiloxane resin for high-temperature-resistant coatings[J]. Polymer, 2024, 307: 127302.
[25] Wójcik-Bania M, Stochmal E. Thermal properties of polysiloxane/Ag nanocomposites with different network structures and distributions of Si-H groups[J]. Materials, 2024, 17(23): 5809.
[26] Jiang Y J, Wang X Y, Yang M R, et al. An advanced ceramifiable organic-inorganic hybrid polysiloxane coating with superior moisture-resistant property[J]. Journal of the European Ceramic Society, 2025, 45(2): 116924.
[27] Jiang J, Yuan X Y, Xue K L, et al. Novel hybrid zirconium-silicone resin as high-temperature adhesive and an insight into the thermal resistance mechanism[J]. Chemical Engineering Journal, 2022, 446: 137350.
[28] 韩颖超. 含锆杂化硅树脂的制备与热性能研究[D]. 济南: 山东大学, 2016: 43-45.
[29] 王宣. SiAl(Zr)OC陶瓷的制备及其微观结构与性能的演变[D]. 广州: 华南理工大学, 2021: 24-26.
[30] 代广富, 裴勇兵, 褚俊涵, 等. 有机硅树脂耐高温改性方法及机理研究进展[J]. 高分子材料科学与工程, 2022, 38(3): 174-182.
[31] Jiang J, Yuan X Y, He X, et al. Effects of cross-linking degree and steric hindrance on the thermal degradation behavior of novel hybrid zirconium-silicone resin[J]. Polymer, 2023, 284: 126306.
[32] Santhosh B, Ionescu E, Andreolli F, et al. Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics[J]. Journal of the European Ceramic Society, 2021, 41(2): 1151-1162.
[33] Yang J, Xu Y Y, Jiang W H, et al. The thermal transformation process and mechanical strength evolution of ceramifiable silicone composites[J]. Ceramics International, 2021, 47(15): 21276-21284.
[34] Duan L Q, Ma Q S. Effect of pyrolysis temperature on the pore structure evolution of polysiloxane-derived ceramics[J]. Ceramics International, 2012, 38(4): 2667-2671.
[35] He F, Li W J, Zhou L, et al. Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method[J]. Ceramics International, 2019, 45(3): 3954-3960.
[36] Zang W J, Guo F, Liu J C, et al. Lightweight alumina-based fibrous ceramics with different high temperature binder[J]. Ceramics International, 2016, 42(8): 10310-10316.
[37] Dong X, Sui G F, Yun Z Q, et al. Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method[J]. Materials & Design, 2016, 90: 942-948.

备注/Memo

备注/Memo:
收稿日期:2024-02-21 网络出版日期:2025-06-03基金项目:浙江省自然科学基金重点项目(LZ23E020003);国家自然科学基金项目(51872262)作者简介:易舒政(2000— ),男,湖南株洲人,硕士研究生,主要从事陶瓷基复合材料方面的研究。通信作者:陈建军,E-mail:chen@zstu.edu.cn
更新日期/Last Update: 2025-11-25