[1] 武魏楠. 海辰储能: 能源自由的急先锋 [J]. 能源, 2025(2): 20-22.
[2] 方朝斌, 赖文斌, 陈立辉, 等. 钠离子电池层状过渡金属氧化物正极的阳离子掺杂研究进展 [J]. 福建轻纺, 2025(4): 4-10.
[3] 刘燕, 孙静静, 曹智洋, 等. 聚阴离子型化合物 Na3V2(PO4)3@C 的合成与性能研究 [J]. 河南化工, 2024, 41(11): 10-14.
[4] Kim C U, Yu J C, Jung E D, et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells[J]. Nano Energy, 2019, 60: 213-221.
[5] 辛更澳, 马德龙, 马松, 等. 钠电池正极材料的研究进展 [J]. 山东化工, 2024, 53(21): 93-97.
[6] Liu Q, Hu Z, Chen M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): 1805381.
[7] 刘征, 邝贝贝, 庞欢. 双金属普鲁士蓝应用于钠电正极的实验设计 [J]. 实验技术与管理, 2024, 41(11): 58-63.
[8] Wang B, Hu Y, Zhang X, et al. Lotus root-like porous Na2MnPO4F·Na3V2(PO4)2F3/C as a high-performance cathode material for sodium-ion batteries[J]. Ceramics International, 2023, 49(1): 1061-1068.
[9] 陈飞江. 钠离子电池层状正极材料研究进展 [J]. 山东化工, 2024, 53(2): 115-117.
[10] 杨阳, 杨慧雅, 周新东, 等. 钠离子电池用磷酸盐基聚阴离子化合物正极材料研究进展 [J]. 厦门大学学报(自然科学版), 2025, 64(1): 45-62.
[11] 张鼎, 周启坤, 刘镇铭, 等. 钠离子电池正极材料磷酸焦磷酸铁钠的研究进展 [J]. 南京工业大学学报(自然科学版), 2024, 46(3): 235-250.
[12] 闫共芹, 谢相飞, 蓝春波, 等. Mn2+掺杂聚阴离子型钠离子电池正极材料的制备及电化学性能 [J/OL]. 精细化工, 1-13(2024-10-29)[2025-05-13]. https://doi.org/10.13550/j.jxhg.20240650.
[13] 李龙飞, 陈玲玲, 李高锋, 等. 锰基普鲁士蓝/GO复合材料制备及储钠性能研究 [J]. 电源技术, 2024, 48(12): 2462-2468.
[14] Wu L, Hu Y, Zhang X, et al. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries[J]. Journal of Power Sources, 2018, 374: 40-47.
[15] Sui Y, Shi Z, Hu Y, et al. A pre-oxidation strategy to improve architecture stability and electrochemical performance of Na2MnPO4F particles-embedded carbon nanofibers[J]. Journal of Colloid and Interface Science, 2021, 603: 430-439.
[16] Ling R, Cai S, Shen K, et al. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery[J]. Ceramics International, 2019, 45(16): 19799-19807.
[17] Lin X, Hou X, Wu X, et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Advances, 2014, 4(77): 40985-40993.
[18] Zhong Y, Wu Z, Tang Y, et al. Micro-nano structure Na2MnPO4F/C as cathode material with excellent sodium storage properties[J]. Materials Letters, 2015, 145: 269-272.
[19] Wutthiprom J, Phattharasupakun N, Tomon C, et al. Scalable solvent-free mechanofusion and magnesiothermic reduction processes for obtaining carbon nanospheres-encapsulated crystalline silicon anode for Li-ion batteries[J]. Electrochimica Acta, 2020, 352: 136457.
[20] Chen Y, Xu Y, Sun X, et al. Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries[J]. Journal of Power Sources, 2018, 375: 82-92.
[21] He Z, Huang Y, Liu H, et al. Anode materials for fast charging sodium-ion batteries[J]. Nano Energy, 2024, 129: 109996.
[22] Liang L, Sun X, Zhang J, et al. In situ synthesis of hierarchical core double-shell Ti-Doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-Rate capability and long cycle life for Lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(11): 1802847.
[23] Sun D, Guo R, Lv Y, et al. Na2MnPO4F/Ti3C2-CQDs composite cathode material with enhanced electrochemical properties for lithium/sodium hybrid ion battery[J]. Diamond and Related Materials, 2022, 128: 109216.
[24] Tang S, Wu L, Sui Y, et al. Spray-drying synthesis of Na2Fe1-xMnxPO4F/C cathodes: A facile synergetic strategy harvesting superior sodium storage[J]. Advanced Powder Technology, 2020, 31(4): 1564-1573.
[25] Hu Y, Wu L, Liao G, et al. Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries[J]. Ceramics International, 2018, 44(15): 17577-17584.
[26] Li B, Han C, He Y B, et al. Facile synthesis of Li4Ti5O12/C composite with super rate performance[J]. Energy & Environmental Science, 2012, 5(11): 9595-9602.
[27] Yuan T, Wang Y, Zhang J, et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries[J]. Nano Energy, 2019, 56: 160-168.
[28] Cao Y, Xia X, Liu Y, et al. Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries[J]. Journal of Power Sources, 2020, 461: 228130.
[29] Chen Y, Dong C, Chen L, et al. “One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust[J]. EcoMat, 2023, 5(10): e12393.
[30] Lee J B, Chae O B, Ryu J H, et al. Amorphous titanium/vanadium oxide composite as a high-rate negative electrode material for Lithium-ion batteries[J]. ECS Meeting Abstracts, 2014, MA2014-03(6): 577.
[31] Tang Y, Liu L, Zhao H, et al. Pseudocapacitive behaviors of Li2FeTiO4/C hybrid porous nanotubes for novel Lithium-ion battery anodes with superior performances[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20225-20230.