[
1
]
Radford A, Metz L, Chintala S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks
[
EB/OL
]
. (2016-01-07)
[
2025-03-03
]
. https:
∥
arxiv.org/abs/1511
06434v2.
[2]任雨佳,陈璐,陈郁.基于DCGAN算法的服装款式交互设计[J].毛纺科技,2022,50(3):93-97. [3]Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]∥ Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia. PMLR, 2017: 214-223. [4]田乐,祝双武,王茹,等.生成对抗网络及其在纺织行业中的应用[J].纺织科技进展,2023(11):1-7. [5]Wu Q, Zhu B, Yong B, et al. ClothGAN: Generation of fashionable Dunhuang clothes using generative adversarial networks[J]. Connection Science, 2021, 33(2): 341-358. [6]刘康,马浩然,邢乐.基于生成对抗网络的中式婚服设计[J].服装学报,2024,9(3):208-214. [7]Sohl-Dickstein J, Weiss E, Maheswaranathan N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]∥Proceedings of the 32nd International Conference on Machine Learning. Lille, France. PMLR, 2015: 2256-2265. [8]Ho J, Jain A N, Abbeel P. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2020: 6840-6851. [9]Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 10674-10685. [10]Podell D, English Z, Lacey K, et al. SDXL: Improving latent diffusion models for high-resolution image synthesis . (2023-07-04)[2025-03-03].