[1]王修山, 王铭杰, 徐靖怡, 等. 岩沥青/环氧树脂复合改性路面回收料路用性能[J]. 科学技术与工程, 2022, 22(13): 5395-5402.
[2]Hamedi G H, Esmaeeli M R, Gilani V N M, et al. The effect of aggregate-forming minerals on thermodynamic parameters using surface free energy concept and its relationship with the moisture susceptibility of asphalt mixtures[J]. Advances in Civil Engineering, 2021, 2021(1): 8818681.
[3]Moretti L, Palozza L, D’Andrea A. Causes of asphalt pavement blistering: A review[J]. Applied Sciences, 2024, 14(5): 2189.
[4]王智超, 胡槟, 沈明燕, 等. 基于路用性能的热再生沥青混合料RAP掺量研究[J]. 公路交通科技, 2024, 41(1): 10-17.
[5]左锋, 叶奋, 宋卿卿. RAP掺量对再生沥青混合料路用性能影响[J]. 吉林大学学报(工学版), 2020, 50(4): 1403-1410.
[6]田小革, 姚世林, 卢雪蓉, 等. 基于菲克第二定律的再生沥青中新旧沥青扩散融合研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(11): 21-27.
[7]Li F J, Wang Y H. Use of accelerated natural aging to simulate long-term asphalt binder aging in pavements[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678(2): 266-278.
[8]原广晨. 基于自然老化的SBS改性沥青梯度行为研究及加速老化对比分析[D].长沙: 长沙理工大学, 2021: 69.
[9]Lapian F E P, Ramli M I, Pasra M, et al. The performance modeling of modified asbuton and polyethylene terephthalate (PET) mixture using response surface methodology (RSM)[J]. Applied Sciences, 2021, 11(13): 6144.
[10]Gong Y F, Song J X, Bi H P, et al. Optimization design of the mix ratio of a nano-TiO2/CaCO 3-basalt fiber composite modified asphalt mixture based on response surface methodology[J]. Applied Sciences, 2020, 10(13): 4596.