[1]Cao Y L, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries[J]. Nature Nanotechnology, 2019, 14(3): 200-207.
[2]Liu J, Bao Z, Cui Y N, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4: 180-186.
[3]Li L, Basu S, Wang Y P, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516.
[4]Liu Y D, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017, 2(7): 17083.
[5]Zachman M J, Tu Z Y, Choudhury S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349.
[6]梁杰铬, 罗政, 闫钰, 等. 面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法[J]. 材料导报, 2018, 32(11): 1779-1786.
[7]Hsieh Y C, Leiing M, Nowak S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): 100139.
[8]Sun F, Manke I. Differentiating and quantifying dead lithium[J]. ChemElectroChem, 2019, 6(23): 5787-5789.
[9]Kim M, Lee S, Park D, et al. Tuning lithiophilic sites of Ag-embedded N-doped carbon hollow spheres via intentional blocking strategy for ultrastable Li metal anode in rechargeable batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1785-1796.
[10]Zhang S P, Ma Y, Zhao Y X, et al. Lightweight and flexible 3D ERGO@Cu/PA mesh current collector of Li metal battery for dendrite suppression[J]. ACS Applied Polymer Materials, 2023, 5(5): 3289-3297.
[1]蔡志鹏,刘爱萍,叶方敏.CNT@PP膜的制备及其在锂金属电池中的应用[J].浙江理工大学学报,2023,49-50(自科一):17.
CAI Zhipeng,LIU Aiping,YE Fangmin.Preparation of CNT@PP films and their application in lithium metal batteries[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科一):17.