[1]Schlegl T, Seebck P, Waldstein S M, et al. F-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44.
[2]Wyatt J, Leach A, Schmon S M, et al. AnoDDPM: Anomaly detection with denoising diffusion probabilistic models using simplex noise[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, LA, USA. IEEE, 2022: 649-655.
[3]Mousakhan A, Brox T, Tayyub J. Anomaly detection with conditioned denoising diffusion models. (2023-12-03)[2024-07-01]. http:∥arxiv.org/abs/2305-15956.
[4]Behrendt F, Bhattacharya D, Krüger J, et al. Patched diffusion models for unsupervised anomaly detection in brain MRI[C]∥Medical Imaging with Deep Learning. Paris ,France: PMLR, 2024: 1019-1032.
[5]Sch lkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
[6]Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
[7]Ruff L, Vandermeulen R, Goernitz N, et al. Deep one-class classification[C]∥International Conference on Machine Learning. Stockholmsm ssan, Stockholm Sweden. PMLR, 2018: 4393-4402.
[8]Li C L, Sohn K, Yoon J, et al. CutPaste: Self-supervised learning for anomaly detection and localization[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 9659-9669.
[9]Liu Z K, Zhou Y M, Xu Y S, et al. SimpleNet: A simple network for image anomaly detection and localization[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada. IEEE, 2023: 20402-20411.
[10]邢鹏, 蒋鑫, 潘永华, 等. 基于特征约束蒸馏学习的视觉异常检测[J]. 软件学报, 2023, 34(9): 4378-4391.