|本期目录/Table of Contents|

[1]裴岩,王蓉,崔灿,等.石墨/4H碳化硅纳米多孔阵列光阳极的制备及其光电催化性能研究[J].浙江理工大学学报,2024,51-52(自科六):801-808.
 PEI Yan,WANG Rong,CUI Can,et al.Preparation and photoelectrochemical performance of graphite/4H silicon carbide nanoporous array photoanodes[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):801-808.
点击复制

石墨/4H碳化硅纳米多孔阵列光阳极的制备及其光电催化性能研究()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第六期
页码:
801-808
栏目:
出版日期:
2024-11-20

文章信息/Info

Title:
Preparation and photoelectrochemical performance of graphite/4H silicon carbide nanoporous array photoanodes
作者:
裴岩王蓉崔灿徐凌波
1.浙江理工大学理学院,杭州 310018;2.浙江大学杭州国际科创中心,a.先进半导体研究院;b.浙江省宽禁带功率半导体材料与器件重点实验室,杭州 311200
Author(s):
PEI Yan WANG Rong CUI Can XU Lingbo
1.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2a.Advanced  Semiconductor Research Institute; 2b.Key Laboratory of Wide Bandgap Power Semiconductor Materials and Devices in Zhejiang Province, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
关键词:
4HSiC纳米多孔阵列光阳极石墨光电催化
分类号:
TM914-4
文献标志码:
A
摘要:
为提高4H碳化硅(4H Silicon carbide,4H SiC)纳米材料的光电催化性能,采用两步阳极氧化法制备了4H SiC纳米多孔阵列(Nanoporous array,NA),并通过高温退火制备石墨/4H SiC NA光阳极;通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、高分辨多功能光谱仪和电化学工作站对石墨/4H SiC NA光阳极的形貌、结构和性能进行了表征。结果表明:阳极氧化法能够刻蚀出纳米多孔,有效提高了4H SiC的比表面积,同时增强了电解液与材料的接触面积;经过退火处理后,4H SiC NA光阳极表面含有分散的石墨;在光照和暗场条件下石墨的存在增强了光生载流子的分离效果,经过优化的4H SiC NA光阳极在光功率100 mW/cm 2的模拟太阳光照条件下,相对于可逆氢电极(Reversible hydrogen electrode,RHE),其光电流密度在1 23 V达到4 72 mA/cm 2,相比4H SiC NA光阳极提升了4 14 mA/cm2。该论文结果研究为提升基于4H SiC材料的光电催化制氢性能提供了一种新思路。

参考文献/References:

[1]Dong Y, Zhai X, Wu Y, et al. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis[J]. Journal of Colloid and Interface Science, 2024, 658: 258-266.
[2]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37-38.
[3]Cao Z, Feng Y, Zhang B, et al. Regulation of bubble behavior on a TiO 2 photoelectrode surface during photoelectrocatalytic water splitting[J]. The Journal of Physical Chemistry C, 2022, 126 (30): 12480-12491.
[4]Liu S, Zheng L, Yu P, et al. Novel composites of α-Fe 2O 3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances[J]. Advanced Functional Materials, 2016, 26 (19): 3331-3339.
[5]Xu X, Li S, Chen J, et al. Design principles and material engineering of ZnS for optoelectronic devices and catalysis[J]. Advanced Functional Materials, 2018, 28 (36): 1802029.
[6]Singla S, Devi P, Basu S. Revolutionizing the role of solar light responsive BiVO 4/BiOBr heterojunction photocatalyst for the photocatalytic deterioration of tetracycline and photoelectrocatalytic water splitting[J]. Materials, 2023, 16 (16): 5561-5581.
[7]Huerta A, Usiobo O, Audinot J, et al. Low temperature open-air plasma deposition of SrTiO 3 films for solar energy harvesting: Impact of precursors on the properties and performances[J]. ACS Appl Mater Interfaces, 2022, 14 (6): 8527-8536.
[8]周林林, 杨涛, 王恩会, 等. 碳化硅纳米线阵列基一体化光电阳极用于高效裂解水制氢[J]. 工程科学学报, 2023, 45 (7): 1149-1155.
[9]Giannazzo F, Panasci S, Schilirò E, et al. Integration of graphene and MoS 2 on silicon carbide: Materials science challenges and novel devices[J]. Materials Science in Semiconductor Processing, 2024, 174: 108220.
[10]Lauermann I, Memming R, Meissner D. Electrochemical properties of silicon carbide[J]. Journal of The Electrochemical Society, 1997, 144 (1): 73-80.

备注/Memo

备注/Memo:
收稿日期: 2024-03-04
网络出版日期:2024-05-08
基金项目: 国家自然科学基金联合基金重点支持项目(U23A20569);浙江省自然科学基金联合基金重大项目(LHZSD24E020001);浙江省宽禁带功率半导体材料与器件重点实验室(浙江大学杭州国际科创中心先进半导体研究院)开放课题
作者简介: 裴岩(1999—),男,山西运城人,硕士研究生,主要从事光电催化材料方面的研究
通信作者: 徐凌波,E-mail:xlb@zstu.edu.cn
更新日期/Last Update: 2024-11-14