|本期目录/Table of Contents|

[1]黄博翔,王智玉,沈洋,等.聚酰胺酸大分子偶联剂乳液的合成及其在回收玻璃纤维增强高温尼龙的界面改性中的应用[J].浙江理工大学学报,2024,51-52(自科四):436-446.
 HUANG Boxiang,WANG Zhiyu,SHEN Yang,et al.Synthesis of polyamic acid macromolecular coupling agent  emulsion and its interface modification of recycled glass fiber reinforced high temperature nylon[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科四):436-446.
点击复制

聚酰胺酸大分子偶联剂乳液的合成及其在回收玻璃纤维增强高温尼龙的界面改性中的应用()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第四期
页码:
436-446
栏目:
出版日期:
2024-07-10

文章信息/Info

Title:
Synthesis of polyamic acid macromolecular coupling agent  emulsion and its interface modification of recycled glass fiber reinforced high temperature nylon
文章编号:
1673-3851 (2024)04-0436-11
作者:
黄博翔王智玉沈洋傅雅琴钱晨
1.浙江理工大学材料科学与工程学院,杭州 310018;2.浙江省现代纺织技术创新中心(鉴湖实验室),浙江绍兴 312000;3.浙江理工大学桐乡研究院,浙江桐乡 314500
Author(s):
HUANG Boxiang WANG Zhiyu SHEN Yang FU Yaqin QIAN Chen
1.School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000,China; 3.Zhejiang Sci-Tech University Tongxiang Research Institute, Tongxiang 314500, China
关键词:
回收玻璃纤维聚酰胺酸大分子偶联剂高温尼龙复合材料
分类号:
TB332
文献标志码:
A
摘要:
为提升回收玻璃纤维(Recycled glass fiber,rGF)在增强高温尼龙复合材料中的应用价值,制备用于rGF表面处理的耐高温型玻璃纤维浸润剂。以4,4′联苯醚二酐(ODPA)为二酸酐单体、4,4′-二氨基二苯醚(ODA)为二胺单体,合成聚酰胺酸(PAA),然后与γ氨丙基三乙氧基硅烷(KH550)反应得到聚酰胺酸大分子偶联剂(PAA KH550);通过调控ODPA与ODA单体比例,制备得到稳定分散的自乳化PAA KH550乳液。通过激光粒度分析仪、傅里叶变换红外光谱仪及热失重分析仪对乳液的粒径、化学结构及PAA KH550乳液固化膜的耐高温性能进行测试;并采用扫描电子显微镜、单纤维强力机、全自动表面张力仪及复合材料界面评价装置对乳液涂覆的GF进行形貌观察、单丝性能测试、浸润性测试及与聚酰胺46(PA46)的界面剪切强度测试。结果表明:乳液平均粒径均为 110~ 125 nm,且粒径分布较小;PAA KH550乳液固化膜耐高温性能优于PAA乳液固化膜,其5%热分解温度(Td5 )在350 ℃以上;制得的乳液能在rGF表面均匀成膜,有效弥补纤维表面缺陷,从而提升rGF的力学性能。此外,乳液涂敷固化后在纤维表面形成的涂层可有效提高纤维表面能,有助于改善GF与PA46的界面结合性能;实验测得经PAAKH550乳液处理的GF/PA46复合材料的界面剪切强度(IFSS)最高达到(31 29±639)MPa,相比未经乳液处理的样品提高了37%。制备的水体系分散稳定的PAA乳液和PAAKH550乳液,将其应用于rGF表面可有效恢复rGF的综合性能,同时可改善与PA46的界面结合,提高rGF/PA46复合材料的耐高温性能及力学性能,为rGF在高性能复合材料中的应用提供了新方案。

参考文献/References:

[1]Al-FurjanM S H, Shan L, Shen X, et al. A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar riber reinforced polymer composites [J]. Journal of Materials Research and Technology, 2022, 19: 2930-2959.
[2]AmirA L, Ishak M R, Yidris N, et al. Potential of honeycomb-filled composite structure in composite cross-arm component: A review on recent progress and its mechanical properties [J]. Polymers, 2021, 13(8): 1341.
[3]SwolfsY. Perspective for fibre-hybrid composites in wind energy applications [J]. Materials, 2017, 10(11): 1281.
[4]CousinsD S, Suzuki Y, Murray R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades [J]. Journal of Cleaner Production, 2019, 209: 1252-1263.
[5]ShinS R, Mai V D, Lee D S. Chemical recycling of used printed circuit board scraps: recovery and utilization of organic products [J]. Processes, 2019, 7(1): 22.
[6]JensenJ P, Skelton K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy [J]. Renewable & Sustainable Energy Reviews, 2018, 97: 165-176.
[7]YuanX, Zhu B, Cai X, et al. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent [J]. Journal of Applied Polymer Science, 2017, 134(17): 44757.
[8]LeeP-C, Kim S Y, Ko Y K, et al. Tribological properties of polyamide 46/graphene nanocomposites [J]. Polymers, 2022, 14(6): 1139.
[9]DeyM, Deitzel J M, Gillespie J W, et al. Influence of sizing formulations on glass/epoxy interphase properties [J]. Composites Part A:Applied Science and Manufacturing, 2014, 63: 59-67.
[10]GuoX, Lu Y, Sun Y, et al. Effect of sizing on interfacial adhesion property of glass fiber-reinforced polyurethane composites [J]. Journal of Reinforced Plastics and Composites, 2018, 37(5): 321-330.

备注/Memo

备注/Memo:
收稿日期: 2023-12-22
网络出版日期:2024-03-13
基金项目: 国家自然科学基金项目(U20A20264);浙江省自然科学基金项目(LQ22E030012)
作者简介: 黄博翔(1995—),男,河南洛阳人,硕士研究生,主要从事复合材料界面改性等方面的研究
通信作者: 钱晨,E-mail:qian@zstu.edu.cn
更新日期/Last Update: 2024-08-01