[ 1 ]时造雄 , 茅正冲 . 基于改进 Yolov5 的花色布匹瑕疵检测方法[ J ] . 计算机测量与控制 , 2023, 31(4): 56 - 62. [ 2 ]许玉格 , 钟铭 , 吴宗泽 , 等 . 基于深度学习的纹理布匹瑕疵检测方法[ J ] . 自动化学报 , 2023, 49(4): 857 - 871. [ 3 ]俞文静 , 刘航 , 李梓瑞 , 等 . 基于图像增强和 CNN 的布匹瑕疵检测算法[ J ] . 计算机技术与发展 , 2021, 31(5): 90 - 95. [ 4 ] Jia D Y, Zhou J L, Zhang C W. Detection of cervical cells based on improved SSD network [ J ] . Multimedia Tools and Applications, 2022, 81(10): 13371 - 13387. [ 5 ] Diwan T, Anirudh G, Tembhurne J V. Object detection using YOLO: Challenges, architectural successors, datasets and applications [ J ] . Multimedia Tools and Applications, 2023, 82(6): 9243 - 9275. [ 6 ] Sharma V K, Mir R N. Saliency guided faster - RCNN (SGFr - RCNN)model for object detection and recognition [ J ] . Journal of King Saud University - Computer and Information Sciences, 2022, 34(5): 1687 - 1699. [ 7 ] 蔡兆信 , 李瑞新 , 戴逸丹 , 等 . 基于 Faster RCNN 的布匹瑕疵识别系统[ J ] . 计算机系统应用 , 2021, 30(2): 83 - 88. [ 8 ] Zhou S, Zhao J, Shi Y S, et al. Research on improving YOLOv5s algorithm for fabric defect detection [ J ] . International Journal of Clothing Science and Technology, 2023, 35(1): 88 - 106. [ 9 ] Liu J H, Wang C Y, Su H, et al. Multistage GAN for fabric defect detection [ J ] . IEEE Transactions on Image Processing, 2019, 29: 3388 - 3400. [ 10 ]李辉 , 吕祥聪 , 申贝贝,等 . 双路高分辨率转换网络的花色布匹瑕疵检测[ J ] . 计算机工程与设计 , 2023, 44(9): 2731 - 2739.