[1]GuoD, Guo Q, Chen Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11(22): 100157.
[2]王丹, 王晓丹, 马海, 等. Ga2O3材料的掺杂研究进展[J]. 激光与光电子学进展, 2021, 58(15): 306-312.
[3]王江, 罗林保. 基于氧化镓日盲紫外光电探测器的研究进展[J]. 中国激光, 2021, 48(11): 7-37.
[4]ZhangM L, Liu Z, Yang L L, et al. Β -Ga2O3-based power devices: A concise review[J]. Crystals, 2022, 12(3): 406.
[5]ZhangJ C, Dong P F, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900.
[6]〖JP3〗ZhengY X, Feng Z X, Bhuiyan A F M A U, et al. Large-size free-standing single-crystal β-Ga2O3 membranes fabricated by hydrogen implantation and lift-off[J]. Journal of Materials Chemistry C, 2021, 9(19): 6180-6186.
[7]ParkS Y, Ha M T, Kim K H, et al. Enhanced thickness uniformity of large-scale α -Ga2O3 epilayers grown by vertical hot-wall mist chemical vapor deposition [J]. Ceramics International, 2022, 48(4): 5075-5082.
[8]CiobanuV, Ceccone G, Jin I, et al. Large-sized nanocrystalline ultrathin β -Ga2O3 membranes fabricated by surface charge lithography[J]. Nanomaterials, 2022, 12(4): 689.
[9]崔岁寒, 郭宇翔, 陈秋皓, 等. 高功率脉冲磁控溅射仿真技术研究进展[J]. 中国表面工程, 2022, 35(5): 23-41.
[10]乔阳阳, 刘明雪, 刘琼溪, 等. 磁控溅射技术在纺织领域的应用研究进展[J]. 现代纺织技术,2023, 31(2): 204-217.