|本期目录/Table of Contents|

[1]陈思颖,谢番,赵瑞波,等.仿生矿化透明质酸钠复合材料的制备及其性能分析[J].浙江理工大学学报,2024,51-52(自科三):292-299.
 CHEN Siying,XIE Fan,ZHAO Ruibo,et al.Preparation of biomimetic mineralized sodium hyaluronate composites and the analysis of their properties[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科三):292-299.
点击复制

仿生矿化透明质酸钠复合材料的制备及其性能分析()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第51-52卷
期数:
2024年自科第三期
页码:
292-299
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Preparation of biomimetic mineralized sodium hyaluronate composites and the analysis of their properties
文章编号:
1673-3851 (2024) 05-0292-08
作者:
陈思颖谢番赵瑞波孔祥东
浙江理工大学材料科学与工程学院,杭州 310018
Author(s):
CHEN Siying XIE Fan ZHAO Ruibo KONG Xiangdong
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
仿生矿化透明质酸钠磷酸钙寡聚体复合材料力学性能
分类号:
TB33
文献标志码:
A
摘要:
为了提升透明质酸钠(Sodium hyaluronate, SH)的力学性能,采用仿生矿化方法,将磷酸钙寡聚体(Calcium phosphate oligomers, CPO)与SH复合形成透明质酸钠复合材料(SH-CPO),对SH-CPO的形貌、结构、流变学特性及压缩性能进行了测试与表征。结果表明:SH不仅与CPO具有良好的相互作用,反应后能形成内部结构连续的复合材料,还能诱导CPO发生从无定形到结晶相的转变;在SH与CPO的质量比为1∶1~1∶10范围内,随着CPO投料比例的增加,制备的SH CPO复合材料的黏度得到提升,压缩强度可达到53.5 MPa。该研究制备的SH-CPO复合材料具有良好的力学性能,在生物医学材料领域中具有良好的应用潜力。

参考文献/References:

[1]Chae J J, Jung J H, Zhu W, et al. Drug-free, nonsurgical reduction of intraocular pressure for four months after suprachoroidal injection of hyaluronic acid hydrogel[J]. Advanced Science, 2021, 8(2): 2001908.
[2]Raia N R, Jia D, Ghezzi C E, et al. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes[J]. Biomaterials, 2020, 233: 119729.
[3]Cai Z X, Tang Y M, Wei Y, et al. Physically cross-linked hyaluronan-based ultrasoft cryogel prepared by freeze-thaw technique as a barrier for prevention of postoperative adhesions[J]. Biomacromolecules, 2021, 22(12): 4967-4979.
[4]Li Z Y, Liu L X, Chen Y M. Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier[J]. Acta Biomaterialia, 2020, 110: 119-128.
[5]Jin Y J, Koh R H, Kim S H, et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair[J]. Materials Science and Engineering: C-Materials for Biological Applications, 2020, 115: 111096.
[6]Galarraga J H, Locke R C, Witherel C E, et al. Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair[J]. Biofabrication, 2022, 14(1): 041406.
[7]Burdick J A, Prestwich G D. Hyaluronic acid hydrogels for biomedical applications[J]. Advanced Materials, 2011, 23(12): 41-56.
[8]Khanlari A, Schulteis J E, Suekama T C, et al. Designing crosslinked hyaluronic acid hydrogels with tunable mechanical properties for biomedical applications[J]. Journal of Applied Polymer Science, 2015, 132(22): 42009.
[9]Crescenzi V, Francescangeli A, Taglienti A, et al. Synthesis and partial characterization of hydrogels obtained via glutaraldehyde crosslinking of acetylated chitosan and of hyaluronan derivatives[J]. Biomacromolecules, 2003, 4(4): 1045-1054.
[10]Choi S C, Yoo M A, Lee S Y, et al. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents[J]. Journal of Biomedical Materials Research Part A, 2015, 103(9): 3072-3080.

备注/Memo

备注/Memo:
收稿日期: 2023-09-01
网络出版日期:2023-12-06
基金项目: 国家自然科学基金项目(51902289);浙江省自然科学基金项目(LQ19E020010)
作者简介: 陈思颖(1997—),女,湖北武汉人,硕士研究生,主要从事生物医用材料方面的研究
通信作者: 赵瑞波,E-mail:rzhao@zstu.edu.cn
更新日期/Last Update: 2024-06-19