[1]黄新宇, 许娇龙, 郭纲, 等. 基于增强聚合通道特征的实时行人重识别[J]. 激光与光电子学进展, 2017, 54(9): 119127.
[2]罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45(11): 20322049.
[3]Wang Y Y, Li X A, Jiang M X, et al. Crossview pedestrian clustering via graph convolution network for unsupervised person reidentification[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3): 44534462.
[4]Kim G, Shu D W, Kwon J. Robust person reidentification via graph convolution networks[J]. Multimedia Tools and Applications, 2021, 80(19): 2912929138.
[5]潘海鹏, 郝慧, 苏雯. 基于注意力机制与多尺度特征融合的人脸表情识别[J]. 浙江理工大学学报(自然科学版), 2022, 47(3): 382388.
[6]刘紫燕, 万培佩. 基于注意力机制的行人重识别特征提取方法[J]. 计算机应用, 2020, 40(3): 672676.
[7]Cho Y, Kim W J, Hong S, et al. Partbased pseudo label refinement for unsupervised person reidentification[C]2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 73087318.
[8]Ge Y X, Zhu F, Chen D P, et al. Selfpaced contrastive learning with hybrid memory for domain adaptive object reID[C]Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, BC, Canada. New York: ACM, 2020: 1130911321.
[9]Lin Y T, Dong X Y, Zheng L A, et al. A bottomup clustering approach to unsupervised person reidentification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 87388745.
[10]孙义博, 张文靖, 王蓉, 等. 基于通道注意力机制的行人重识别方法[J]. 北京航空航天大学学报, 2022, 48(5): 881889.
[1]顾淳,俞成海,于洋,等.基于BERT模型的无监督中文单文本关键词提取模型[J].浙江理工大学学报,2022,47-48(自科三):424.
GU Chun,YU Chenghai,YU Yang,et al.Unsupervised keyword extraction model for Chinese single text based on BERT model[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科六):424.