[1]World Health Organization. WHO coronavirus(COVID19) dashboard[EB/OL]. (20230130)[20230303]. https:∥covid19.who.int/.
[2]左斌, 李菲菲. 基于注意力机制和InfNet的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2): 2228.
[3]Ma J, Wang Y X, An X L, et al. Toward dataefficient learning: a benchmark for COVID19 CT lung and infection segmentation[J]. Medical Physics, 2021, 48(3): 11971210.
[4]Zhao W T, Jiang W, Qiu X G. Deep learning for COVID19 detection based on CT images[J]. Scientific Reports, 2021, 11:14353.
[5]Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019nCoV outbreak originating in Wuhan, China: A modelling study[J]. The Lancet, 2020, 395(10225): 689697.
[6]Cong R M, Zhang Y M, Yang N, et al. Boundary guided semantic learning for realtime COVID19 lung infection segmentation system[J]. IEEE Transactions on Consumer Electronics, 2022, 68(4): 376386.
[7]彭璟,罗浩宇,赵淦森,等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用,2021, 57(3): 4457.
[8]Ronneberger O, Fischer P, Brox T. UNet: Convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and ComputerAssisted Intervention. Cham: Springer, 2015: 234241.
[9]王卓英,童基均,蒋路茸,等. 基于UDensenet网络的DSA图像冠状动脉血管分割[J]. 浙江理工大学学报(自然科学版), 2021, 45(3): 390399.
[10]Zhou Z W, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++: A nested UNet architecture for medical image segmentation[C]∥International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 311.
收稿日期: 2023-03-03
基金项目: 浙江省自然科学基金项目(LQ21F030019)
作者简介: 祝鹏烜(1993-),男,浙江江山人,硕士研究生,主要从事医学图像分割方面的研究。
通信作者: 李旭,Email:lixu0103@163.com