|本期目录/Table of Contents|

[1]洪宇翔,王泽文,徐定华.二维单向强退化抛物型方程的参数识别反问题[J].浙江理工大学学报,2023,49-50(自科三):388-395.
 HONG Yuxiang,WANG Zewen,XU Dinghua.Inverse problems of the parameter identification for two dimensional one way strongly degenerate parabolic equations[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科三):388-395.
点击复制

二维单向强退化抛物型方程的参数识别反问题()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第49-50卷
期数:
2023年自科第三期
页码:
388-395
栏目:
出版日期:
2023-05-31

文章信息/Info

Title:
Inverse problems of the parameter identification for two dimensional one way strongly degenerate parabolic equations
文章编号:
1673-3851 (2023) 05-0388-08
作者:
洪宇翔王泽文徐定华
1.东华理工大学理学院,南昌 330013;2.浙江理工大学理学院,杭州 310018
Author(s):
HONG Yuxiang WANG Zewen XU Dinghua
1.School of Science, East China University of Technology, Nanchang 330013, China;  2.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
强退化抛物型方程参数识别有限差分遗传算法
分类号:
O175-26
文献标志码:
A
摘要:
针对矩形区域内两种形式的强退化扩散系数,研究了二维单向强退化抛物型方程中扩散项的参数识别反问题。首先,利用Hlder不等式等证明了扩散项参数识别的唯一性和条件稳定性;然后,给出了数值计算强退化抛物型方程正问题的一种交替方向有限差分隐格式;最后,通过将退化扩散项的参数识别反问题归结为泛函优化问题,提出了基于遗传算法的退化项参数识别方法。计算模拟结果表明,退化项参数能被附加的测量数据有效识别出来,且提出的基于遗传算法的退化项参数识别方法具有很强的鲁棒性。

参考文献/References:

1 Rao X B, Wang Y X, Qian K, et al. Numerical simulation for an inverse source problem in a degenerate parabolic equation J . Applied Mathematical Modelling, 2015, 39(23/24): 7537 - 7553.

2Yang L, Deng Z C. An inverse backward problem for degenerate parabolic equationsJ. Numerical Methods for Partial Differential Equations, 2017, 33(6): 1900-1923.

3Deng Z C, Liu F L, Yang L, et al. Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equationJ. AIMS Mathematics, 2021, 6(4): 3080-3104.

4Kamynin V L. On the solvability of the inverse problem for determining the right-hand side of a degenerate parabolic equation with integral observationJ. Mathematical Notes, 2015, 98(5/6): 765-777.

5Kawamoto A. Inverse problems for linear degenerate parabolic equations bytime-likeCarleman estimateJ. Journal of Inverse and Ill-posed Problems, 2015, 23(1): 1-21.

6Ivanchov M, Vlasov V . Inverse problem for a two-dimensional strongly degenerate heat equationJ. Electronic Journal of Differential Equations, 2018, 2018(77): 1-17.

7Cannarsa P, Doubova A, Yamamoto M. Inverse problem of reconstruction of degenerate diffusion coefficient in a parabolic equationJ. Inverse Problems, 2021, 37(12): 125002.

8Wang Z W, Chen S L, Qiu S F, et al. A non-iterative method for recovering the space-dependent source and the initial value simultaneously in a parabolic equationJ. Journal of Inverse and Ill-Posed Problems, 2020, 28(4): 499-516.

9Wang Z W, Ruan Z S, Huang H L, et al. Determination of an unknown time-dependent heat source from a nonlocal measurement by finite difference methodJ. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36(1): 151-165.

10]邱淑芳, 王泽文, 曾祥龙, . 一类时间分数阶扩散方程中的源项反演解法[J. 江西师范大学学报(自然科学版), 2018, 42(6): 610-615.

undefined

备注/Memo

备注/Memo:
收稿日期: 2022-08-17
网络出版日期:2022-11-01
基金项目: 国家自然科学基金项目(11961002, 11861007);江西省自然科学基金重点项目(20212ACB201001);东华理工大学研究生创新项目 (DHYC-201929)
作者简介: 洪宇翔(1998-),男,安徽淮南人,硕士研究生,主要从事反问题建模与计算方面的研究
通信作者: 王泽文,E-mail:zwwang6@163.com
更新日期/Last Update: 2023-09-08