|本期目录/Table of Contents|

[1]廖龙杰,吕文涛,叶冬,等.基于深度学习的小目标检测算法研究进展[J].浙江理工大学学报,2023,49-50(自科三):331-343.
 LIAO Longjie,L Wentao,YE Dong,et al.Research progress of small target detection based on deep learning[J].Journal of Zhejiang Sci-Tech University,2023,49-50(自科三):331-343.
点击复制

基于深度学习的小目标检测算法研究进展()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第49-50卷
期数:
2023年自科第三期
页码:
331-343
栏目:
出版日期:
2023-05-31

文章信息/Info

Title:
Research progress of small target detection based on deep learning
文章编号:
1673-3851 (2023) 05-0331-13
作者:
廖龙杰吕文涛叶冬郭庆鲁竞刘志伟
1.浙江理工大学,a.信息科学与工程学院;b.浙江省智能织物与柔性互联重点实验室,杭州 310018;2.浙江移动信息系统集成有限公司,杭州 311217;3.浙江省技术创新服务中心,杭州 310007
Author(s):
LIAO LongjieL Wentao YE Dong GUO QingLU Jing LIU Zhiwei
1a.School of Information Science and Engineering; 1b.Key Laboratory of Intelligent Textile and  Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2.Zhejiang Mobile Information System Integration Co., Ltd., Hangzhou 311217, China;  3.Zhejiang Technology Innovation Service Center, Hangzhou 310007, China
关键词:
深度学习神经网络图像处理目标检测小目标检测
分类号:
TP391-4
文献标志码:
A
摘要:
基于深度学习的小目标检测算法可以有效提高小目标检测性能和检测速率,在图像处理领域得到了广泛应用。首先概述了小目标检测的难点,分别对基于锚框优化、基于网络结构优化、基于特征增强的小目标检测算法进行了分析,总结了各算法的优缺点;然后介绍了用于小目标检测的公共数据集和小目标检测算法的评价指标,对检测算法的性能指标进行了分析;最后对小目标检测算法已经解决的难点进行了总结,并对有待后续研究方向进行了展望。深度学习在小目标检测领域仍有较大的发展空间,在模型通用性、耗时与精度和特定场景的小目标检测等方面有待深入研究。

参考文献/References:

1 Zou Z X, Shi Z W, Guo Y H, et al. Object detection in 20 years: A survey. (2019 - 05 - 13) 2022 - 11 - 18 .

2]张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J. 计算机学报, 2019, 42(3): 453-482.

3]陈科圻, 朱志亮, 邓小明, . 多尺度目标检测的深度学习研究综述[J. 软件学报, 2021, 32(4): 1201-1227.

4Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networksJ. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

5Sun P Z, Zhang R F, Jiang Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposalsC]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA. IEEE, 2021: 14449-14458.

6Qiao L M, Zhao Y X, Li Z Y, et al. DeFRCN: Decoupled faster R-CNN for few-shot object detectionC]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada. IEEE, 2021: 8681-8690.

7Redmon J, Farhadi A. YOLOv3: An incremental improvement . (2018-04-08)2022-11-18.

8Li C, Li L, Jiang H, et al. YOLOv6: A single-stage object detection framework for industrial applications . (2022-09-07)2022-11-18.

9Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. (2022-07-06)2022-11-18.

10Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detectorC]∥Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.

undefined

相似文献/References:

[1]陈巧红,余仕敏,贾宇波.广告点击率预估技术综述[J].浙江理工大学学报,2015,33-34(自科6):851.
 CHEN Qiao hong,YU Shi min,JIA Yu bo.Overview of Advertisement Clickthrough Rate Estimating Techniques[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科三):851.
[2]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on  attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):208.
[3]包晓安,徐海,张娜,等.基于深度学习的语音识别模型及其在智能家居中的应用[J].浙江理工大学学报,2019,41-42(自科二):217.
 BAO Xiaoan,XU Hai,ZHANG Na,et al.Speech recognition model based on deep learning and its application in smart home[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):217.
[4]邓远远,沈炜.基于注意力反馈机制的深度图像标注模型[J].浙江理工大学学报,2019,41-42(自科二):208.
 DENG Yuanyuan,SHEN Wei.Depth image caption model based on attention feedback mechanism[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):208.
[5]陈巧红,董雯,孙麒,等.基于混合神经网络的单文档自动文摘模型[J].浙江理工大学学报,2019,41-42(自科四):489.
 CHEN Qiaohong,DONG Wen,SUN Qi,et al.Single document automatic summarization model based on hybrid neural network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):489.
[6]包晓安,高春波,张娜,等.基于生成对抗网络的图像超分辨率方法[J].浙江理工大学学报,2019,41-42(自科四):499.
 BAO Xiaoan,GAO Chunbo,ZHANG Na,et al.Image superresolution method based ongenerative adversarial network[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):499.
[7]陈巧红,陈翊,孙麒,等.服装图像分类技术综述[J].浙江理工大学学报,2019,41-42(自科五):631.
 CHEN Qiaohong,CHEN Yi,SUN Qi,et al.Overview of clothing image classification technology[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):631.
[8]张逾傲,胡觉亮.随机径向基函数神经网络的收敛性分析[J].浙江理工大学学报,2019,41-42(自科六):835.
 ZHANG Yuao,HU Jueliang.Convergence analysis of stochastic radial basis function neural networks[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科三):835.
[9]包晓安,涂小妹,徐璐,等.基于扩展卷积神经网络与度量学习的指静脉识别[J].浙江理工大学学报,2020,43-44(自科二):232.
 BAO Xiaoan,TU Xiaomei,XU Lu,et al.Finger vein recognition based on extended convolutional neural networks and metric learning[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科三):232.
[10]杨怡然,吴巧英.智能化服装搭配推荐研究进展[J].浙江理工大学学报,2021,45-46(自科一):1.
 YANG Yiran,WU Qiaoying.Research progress of intelligent clothing matching recommendation[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科三):1.

备注/Memo

备注/Memo:
收稿日期: 2022-11-18
网络出版日期:2023-03-01
基金项目: 国家自然科学基金项目(61601410);浙江省科技厅重点研发计划项目(2021C01047, 2022C01079);东北大学流程工业综合自动化国家重点实验室联合基金项目(2021-KF-21-03,2021-KF-21-06)
作者简介: 廖龙杰(1998-),男,湖南衡阳人,硕士研究生,主要从事计算机视觉与模式识别方面的研究。
通信作者: 吕文涛,E-mail:alvinlwt@zstu.edu.cn
更新日期/Last Update: 2023-09-08