[ 1 ] He X, Wu J, Tu Y, et al. Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO 2 nanoparticles as electron transport layers[J]. Journal of Power Sources, 2017, 365: 83-91. [2]Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(13): 2579-2605. [3]Xu P, He H, Ding J, et al. Simultaneous passivation of the SnO 2/perovskite interface and perovskite absorber layer in perovskite solar cells using KF surface treatment[J]. ACS Applied Energy Materials, 2021, 4(10): 10921-10930. [4]Ma J, Lin Z, Guo X, et al. Low-temperature solution‐processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%[J]. Solar RRL, 2019, 3(7): 96-103. [5]Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [6]Kim M, Jeong J, Lu H, et al. Conformal quantum dot-SnO 2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306. [7]Chen Y, Meng Q, Zhang L, et al. SnO 2-based electron transporting layer materials for perovskite solar cells: A review of recent progress[J]. Journal of Energy Chemistry, 2019, 35: 144-167. [8]Zhen C, Wu T, Chen R, et al. Strategies for modifying TiO 2 based electron transport layers to boost perovskite solar cells[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4586-4618. [9]Niu H, Fang C, Wei X, et al. Magnetron sputtered ZnO electron transporting layers for high performance perovskite solar cells[J]. Dalton Transactions, 2021, 50(19): 6477-6487. [10]Lee J W, Lee T Y, Yoo P J, et al. Rutile TiO 2-based perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(24): 9251-9259.