[1]Gu X X, Tang T Y, Liu X T, et al. Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives[J]. Journal of Materials Chemistry A, 2019, 7(19): 11566-11583.[2]Yuan H, Peng H J, Huang J Q, et al. Sulfur redox reactions at working interfaces in lithium-sulfur batteries: a perspective[J]. Advanced Materials Interfaces, 2019, 6(4): 1802046.
[3]Ko J, Yoon Y S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?[J]. Ceramics International, 2019, 45(1): 30-49.
[4]Xia S X, Wu X S, Zhang Z C, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4): 753-785
[5]Cha E, Kim D K, Choi W. Advances of 2D MoS2 for high-energy lithium metal batteries[J]. Frontiers in Energy Research, 2021, 9: 645403.
[6]Wang Q Y, Liu B, Shen Y H, et al. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): 2101111.
[7]Wang X E, Kerr R, Chen F F, et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes[J]. Advanced Materials, 2020, 32(18): 1905219.
[8]Lewis J A, Cortes F J Q, Boebinger M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2): 591-599.
[9]Touja J, Louvain N, Stievano L, et al. An overview on protecting metal anodes with alloy-type coating[J]. Batteries & Supercaps, 2021, 4(8): 1252-1266.
[10]Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.