[ 1 ] Jaynes E T. Information theory and statistical mechanics [ J/OL ] . Physical Review, 1957, 106: 620-630. https://link.aps.org/doi/10-1103/PhysRev.106-620. [2]Mead L R. Approximate solution of Fredholm integral equations by the maximum-entropy method[J]. Journal of Mathematical Physics, 1986, 27(12): 2903-2907. [3]Bandyopadhyay K, Bhattacharya A K, Biswas P, et al. Maximum entropy and the problem of moments: A stable algorithm[J]. Physical Review E, 2005, 71(5): 057701. [4]Ding J, Jin C M, Rhee N H, et al. A maximum entropy method based on piecewise linear functions for the recovery of a stationary density of interval mappings[J]. Journal of Statistical Physics, 2011, 145(6): 1620-1639. [5]张茹,徐春伟,靳聪明.最大熵方法在计算二维不变测度中的应用[J]. 浙江理工大学学报(自然科学版), 2017, 37(4): 569-574. [6]Jin C M, Ding J. Solving Fredholm integral equations via a piecewise linear maximum entropy method[J]. Journal of Computational and Applied Mathematics, 2016, 304: 130-137. [7]Jin C M, Ding J. A maximum entropy method for solving the boundary value problem of second order ordinary differential equations[J]. Journal of Mathematical Physics, 2018, 59(10): 103505. [8]Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. [9]R nyi A. On measures of entropy and information[C]//Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1961: 547-562. [10]Lenzi E K, Mendes R S, da Silva L R. Statistical mechanics based on Rnyi entropy[J]. Physica A: Statistical Mechanics and Its Applications, 2000, 280(3/4): 337-345.