|本期目录/Table of Contents|

[1]龚园园,陈涌.带有输运型噪声的三维Euler型Leray-ɑ模型解的存在性及极限行为[J].浙江理工大学学报,2022,47-48(自科六):931-940.
 GONG Yuanyuan,CHEN Yong.Existence and scaling limit of solutions of Leray-ɑ model of three dimensional Euler equations with transport noises[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科六):931-940.
点击复制

带有输运型噪声的三维Euler型Leray-ɑ模型解的存在性及极限行为()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第六期
页码:
931-940
栏目:
出版日期:
2022-11-10

文章信息/Info

Title:
Existence and scaling limit of solutions of Leray-ɑ model of three dimensional Euler equations with transport noises
文章编号:
1673-3851 (2022) 11-0931-10
作者:
龚园园陈涌
浙江理工大学理学院,杭州 310018
Author(s):
GONG Yuanyuan CHEN Yong
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
随机Euler型Leray-ɑ模型输运型噪声Prohorov定理Skorokhod 定理 Galerkin 逼近方法紧性方法
分类号:
O211-63
文献标志码:
A
摘要:
在确定性Leray-ɑ模型上添加输运型噪声,构造带有输运型噪声的Euler型Leray-ɑ 模型,研究在三维情况下输运型噪声趋于0时该随机Euler型Leray-ɑ模型解的存在性及极限行为。通过Galerkin逼近和紧性方法,探究随机Euler型Leray-ɑ模型在分布意义下整体弱解的存在性;利用取特殊值的方法,使噪声趋于0,结合Prohorov定理和Skorokhod定理探究其解的极限行为。研究结果表明:带有输运型噪声的Euler型Leray-ɑ模型的解是收敛到确定性Leray-ɑ模型的唯一解。该结果解答了Barbato等提出噪声趋于0时解的极限行为问题。

参考文献/References:

1 Yu Y J, Li K T. Existence of solutions and Gevrey class regularity for Leray-alpha equations J . Journal of Mathematical Analysis and Applications, 2005, 306(1): 227-242.

2Bardos C, Titi E S. Euler equations for an ideal incompressible fluidsJ. Uspekhi Matematicheskikh Nauk,2007, 62(3): 5-46.

3Barbato D, Bessaih H, Ferrario B. On a stochastic Leray-α model of Euler equationsJ. Stochastic Processes and Their Applications, 2014, 124(1): 199-219.

4Galeati L, Gubinelli M. Noiseless regularisation by noiseJ. Revista Matemtica Iberoamericana, 2022, 38(2): 433-502.

5Wei J L, Duan J Q, Gao H J, et al. Stochastic regularization for transport equationsJ. Stochastics Partial Differential Equations: Analysis and Computations 2021, 9(1): 105-141.

6Chen Y, Ran L X. The effect of a noise on the stochastic modified Camassa-Holm equationJ. Journal of Mathematical Physics, 2020, 61(9): 091504.

7Flandoli F, Galeati L, Luo D J. Delayed blow-up by transport noiseJ. Communications in Partial Differential Equations, 2021, 46(9): 1757-1788.

8Flandoli F, Gubinelli M, Priola E. Well-posedness of the transport equation by stochastic perturbationJ. Inventiones Mathematicae, 2010, 180(1): 1-53.

9Luo D J. Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous systemJ. Nonlinearity, 2021, 34(12): 8311-8330.

10Luo D J, Zhu R C. Stochastic mSQG equations with multiplicative transport noises: White noise solutions and scaling limitJ. Stochastic Processes and Their Applications, 2021, 140: 236-286.

undefined

备注/Memo

备注/Memo:
收稿日期: 2022-06-10
网络出版日期:2022-09-06
基金项目: 浙江省自然科学基金项目(LZJWY22E060002)
作者简介: 龚园园(1997-),女,安徽颍上人,硕士研究生,主要从事随机偏微分方程方面的研究
通信作者: 陈涌,E-mail:chenyong@zstu.edu.cn
更新日期/Last Update: 2022-11-07