[1]Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Realtime single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. [2]Engel J, Schps T, Cremers D. LSDSLAM: Largescale direct monocular SLAM[C]//European Conference on Computer Vision(ECCV 2014). Cham: Springer, 2014: 834-849. [3]MurArtal R, Tards J D. ORBSLAM2: An opensource SLAM system for monocular, stereo, and RGBD cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. [4]Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of nonrigid scenes in realtime[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 343-352. [5]Bescos B, Fcil J M, Civera J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. [6]Chen X, Milioto A, Palazzolo E, et al. SuMa++: efficient LiDARbased semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019: 4530-4537. [7]Zhang J, Henein M, Mahony R, et al. VDOSLAM: A visual dynamic objectaware SLAM system. (2020-5-22)[2022-03-24]. [8]Wimbauer F, Yang N, Von Stumberg L, et al. MonoRec: Semisupervised dense reconstruction in dynamic environments from a single moving camera[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021: 6108-6118. [9]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach, CA, USA: NIPS, 2017: 5998-6008. [10]邓远远, 沈炜. 基于注意力反馈机制的深度图像标注模型[J]. 浙江理工大学学报(自然科学版), 2019, 41(2): 208-216.