|本期目录/Table of Contents|

[1]缪自强,钱凯成,祝宏亮,等.Ni/TiB2的制备及催化甲酸制氢性能[J].浙江理工大学学报,2022,47-48(自科五):737-745.
 MIAO Ziqiang,QIAN Kaicheng,ZHU Hongliang,et al.Preparation of Ni/TiB2 and its property to catalyze formic acid and produce hydrogen[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科五):737-745.
点击复制

Ni/TiB2的制备及催化甲酸制氢性能()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第五期
页码:
737-745
栏目:
出版日期:
2022-09-10

文章信息/Info

Title:
Preparation of Ni/TiB2 and its property to catalyze formic acid and produce hydrogen
文章编号:
1673-3851 (2022) 09-0737-09
作者:
缪自强钱凯成祝宏亮李仁宏
浙江理工大学材料科学与工程学院,杭州 310018
Author(s):
MIAO Ziqiang QIAN Kaicheng ZHU Hongliang LI Renhong
School of Materials Science & Engineering, Zhejiang Sci-Tech  University, Hangzhou 310018, China
关键词:
硼化钛甲酸催化制氢金属-载体强相互作用浸渍法
分类号:
O643-38
文献标志码:
A
摘要:
针对催化剂硼化钛(TiB2)催化甲酸制氢效率低、催化剂成本高的问题,以TiB2为载体,经浸渍法制备由Ni和TiB2合成的复合催化剂,并通过优化制备工艺提升Ni/TiB2的催化甲酸制氢性能。利用TEM、XRD、XPS等表征方法分析Ni/TiB2的形貌、结构和成分,考察Ni/TiB2催化甲酸制氢性能。结果表明:当煅烧温度为600 ℃、Ni与TiB2质量比为1∶20时,Ni/TiB2具有Ni芯封装的核壳结构且Ni均匀地分散在TiB2表面,其中Ni与TiB 2之间存在电子相互作用。相比于TiB2,Ni/TiB2活化能从51.8 kJ/mol下降至41.4 kJ/mol;当甲酸浓度为10 mol/L、反应温度为25 ℃时,Ni/TiB2最佳催化周转频率(TOF)可达5.85 h -1 ,为纯TiB2的292倍。催化甲酸制氢性能的提高,得益于Ni/TiB2催化剂中Ni和TiB2之间的金属-载体强相互作用(SMSI)。研究结果为过渡金属硼化物基催化剂应用于氢能源领域提供了新思路。

参考文献/References:

[1]Fox E B, Velu S, Engelhard M H, et al. Characterization of CeO 2 supported CuPd bimetallic catalyst for the oxygenassisted watergas shift reaction[J]. Journal of Catalysis, 2008, 260(2): 358-370.

[2]Wan X Y, Zhou C M, Chen J S, et al. Basefree aerobic oxidation of 5 hydroxymethylfurfural to 2,5furandicarboxylic acid in water catalyzed by functionalized carbon nanotubesupported AuPd alloy nanoparticles[J]. ACS Catalysis, 2014, 4(7): 2175-2185.

[3]Yang S L, Cao C Y, Sun Y B, et al.Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems[J]. Angewandte Chemie, 2015, 127(9): 2699-2702.

[4]Hkkinen H, Abbet S, Sanchez A, et al. Structural, electronic, and impuritydoping effects in nanoscale chemistry: Supported gold nanoclusters[J]. Angewandte Chemie International Edition, 2003, 42(11): 1297-1300.

[5]Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica coreshell nanocatalysts for hightemperature reactions[J]. Nature Materials, 2009, 8(2): 126-131.

[6]Matsubu J C, Zhang S, DeRita L, et al. Adsorbatemediated strong metalsupport interactions in oxidesupported Rh catalysts[J]. Nature Chemistry, 2017, 9(2): 120-127.

[7]Tang H L, Su Y, Zhang B S, et al. Classical strong metalsupport interactions between gold nanoparticles and titanium dioxide[J]. Science Advances, 2017, 3(10): e1700231.

[8]Mao X Y, Foucher A C, Montini T, et al. Epitaxial and strong support interactions between Pt and LaFeO 3 films stabilize Pt dispersion[J]. Journal of the American Chemical Society, 2020, 142(23): 10373-10382.

[9]Tauster S J, Fung S C, Garten R L. Strong metalsupport interactions. Group 8 noble metals supported on titanium dioxide[J]. Journal of the American Chemical Society, 1978, 100(1): 170-175.

[10]Bruix A, Rodriguez J A, Ramírez P J, et al. A new type of strong metalsupport interaction and the production of H 2 through the transformation of water on Pt/CeO 2(111) and Pt/CeO( x )/TiO 2(110) catalysts[J]. Journal of the American Chemical Society, 2012, 134(21): 8968-8974.

undefined

相似文献/References:

[1]彭美灵,欧阳申珅,王晟,等.钯铂合金纳米晶制备及其甲酸氧化电催化性能研究[J].浙江理工大学学报,2015,33-34(自科6):794.
 PENG Mei ling,OUYANG Shen shen,WANG Sheng,et al.Preparation of PdPt Alloy Nanocrystal and Its Formic Acid Oxidition and Electrocatalytic Properties[J].Journal of Zhejiang Sci-Tech University,2015,33-34(自科五):794.

备注/Memo

备注/Memo:
收稿日期: 2022-02-23
网络出版日期:2022-06-02
基金项目: 国家自然科学基金项目(21872123,22172143)
作者简介: 缪自强(1996-),男,福建宁德人,硕士研究生,主要从事纳米材料催化产氢方面的研究
通信作者: 李仁宏,E-mail:lirenhong@zstu.edu.cn
更新日期/Last Update: 2022-09-07