|本期目录/Table of Contents|

[1]齐海强,郑芳英,罗和治.Disjoint双线性规划的一个混合整数线性规划变换及其应用[J].浙江理工大学学报,2022,47-48(自科四):596-600.
 QI Haiqiang,ZHENG Fangying,LUO Hezhi.A mixed integer linear programming reformulation for disjoint  bilinear programming and its applications[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科四):596-600.
点击复制

Disjoint双线性规划的一个混合整数线性规划变换及其应用()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第47-48卷
期数:
2022年自科第四期
页码:
596-600
栏目:
出版日期:
2022-09-30

文章信息/Info

Title:
A mixed integer linear programming reformulation for disjoint  bilinear programming and its applications
文章编号:
1673-3851 (2022) 07-0596-05
作者:
齐海强郑芳英罗和治
浙江理工大学理学院,杭州 310018
Author(s):
QI Haiqiang ZHENG Fangying LUO Hezhi
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
双线性规划混合整数线性规划disjoint全局最优解
分类号:
O224
文献标志码:
A
摘要:
针对disjoint双线性规划问题,给出了一个混合整数线性规划变换方法,以求得其全局最优解。该方法将disjoint双线性规划变换为一个带有互补约束的线性规划,并利用0.1变量和大M法线性化互补约束。同时,将该方法应用于金融系统中的不确定性系统性风险估计问题,证明了该问题可变换为一个disjoint双线性规划问题,进而利用所提出的方法求解。数值结果表明:提出的方法能有效找到中大规模最坏情形系统性风险估计问题的全局最优解,并优于已有的全局解方法。

参考文献/References:

[1] Konno H. A cutting plane algorithm for solving bilinear programs[J]. Mathematical Programming, 1976, 11(1): 14-27.

[2] Gallo G, lkücü A. Bilinear programming: an exact algorithm[J]. Mathematical Programming, 1977, 12(1): 173-194.

[3] AlKhayyal F A, Falk J E. Jointly constrained biconvex programming[J]. Mathematics of Operations Research, 1983, 8(2): 273-286.

[4] Luo H Z, Ding X D, Peng J M, et al. Complexity results and effective algorithms for worstcase linear optimization under uncertainties[J]. INFORMS Journal on Computing, 2021, 33(1): 180-197.

[5] Peng J M, Zhu T. A nonlinear semidefinite optimization relaxation for the worstcase linear optimization under uncertainties[J]. Mathematical Programming, 2015, 152(1/2): 593-614.

[6] Audet C, Hansen P, Jaumard B, et al. A symmetrical linear maxmin approach to disjoint bilinear programming[J]. Mathematical Programming, 1999, 85(3): 573-592.

[7] Sherali H D, Alameddine A. A new reformulationlinearization technique for bilinear programming problems[J]. Journal of Global Optimization, 1992, 2(4): 379-410.

[8] Alarie S, Audet C, Jaumard B, et al. Concavity cuts for disjoint bilinear programming[J]. Mathematical Programming, 2001, 90(2): 373-398.

[9] Ding X S, AlKhayyal F. Accelerating convergence of cutting plane algorithms for disjoint bilinear programming[J]. Journal of Global Optimization, 2007, 38(3): 421-436.

[10] Kolodziej S, Castro P M, Grossmann I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039-1063.

undefined

备注/Memo

备注/Memo:
收稿日期:2021-12-06
网络出版日期:2022-03-18
基金项目:浙江省自然科学基金项目(LZ21A010003,LY19A010025);国家自然科学基金项目(11871433)
作者简介:齐海强(1997-),男,浙江天台人,硕士研究生,主要从事运筹学、最优化理论方面的研究
通信作者:郑芳英,E-mail:zfy@zstu.edu.cn
更新日期/Last Update: 2022-09-06