[1] Konno H. A cutting plane algorithm for solving bilinear programs[J]. Mathematical Programming, 1976, 11(1): 14-27. [2] Gallo G, lkücü A. Bilinear programming: an exact algorithm[J]. Mathematical Programming, 1977, 12(1): 173-194. [3] AlKhayyal F A, Falk J E. Jointly constrained biconvex programming[J]. Mathematics of Operations Research, 1983, 8(2): 273-286. [4] Luo H Z, Ding X D, Peng J M, et al. Complexity results and effective algorithms for worstcase linear optimization under uncertainties[J]. INFORMS Journal on Computing, 2021, 33(1): 180-197. [5] Peng J M, Zhu T. A nonlinear semidefinite optimization relaxation for the worstcase linear optimization under uncertainties[J]. Mathematical Programming, 2015, 152(1/2): 593-614. [6] Audet C, Hansen P, Jaumard B, et al. A symmetrical linear maxmin approach to disjoint bilinear programming[J]. Mathematical Programming, 1999, 85(3): 573-592. [7] Sherali H D, Alameddine A. A new reformulationlinearization technique for bilinear programming problems[J]. Journal of Global Optimization, 1992, 2(4): 379-410. [8] Alarie S, Audet C, Jaumard B, et al. Concavity cuts for disjoint bilinear programming[J]. Mathematical Programming, 2001, 90(2): 373-398. [9] Ding X S, AlKhayyal F. Accelerating convergence of cutting plane algorithms for disjoint bilinear programming[J]. Journal of Global Optimization, 2007, 38(3): 421-436. [10] Kolodziej S, Castro P M, Grossmann I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039-1063.