[1] Edidin M. Lipids on the frontier: A century of cellmembrane bilayers[J]. Nature Reviews Molecular Cell Biology, 2003, 4(5): 414-418.
[2] Tang M, Waring A J, Hong M. Phosphatemediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solidstate NMR[J]. Journal of the American Chemical Society, 2007, 129(37): 11438-11446.
[3] Gurtovenko A A, Vattulainen I. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: Atomistic molecular dynamics study[J]. Journal of the American Chemical Society, 2005, 127(50): 17570-17571.
[4] Tieleman D P, Leontiadou H, Mark A E, et al. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields[J]. Journal of the American Chemical Society, 2003, 125(21): 6382-6383.
[5] Lin J Q, Dargazany R, AlexanderKatz A. Lipid flipflop and pore nucleation on zwitterionic bilayers are asymmetric under ionic imbalance[J]. Small, 2017, 13(22): 1603708.
[6] 余元勋. 中国分子神经病学[M]. 合肥: 安徽科学技术出版社, 2015: 221.
[7] Gao X L, Hong S, Liu Z P, et al. Membrane potential drives direct translocation of cellpenetrating peptides[J]. Nanoscale, 2019, 11(4): 1949-1958.
[8] Li Z L, Ding H M, Ma Y Q. Translocation of polyarginines and conjugated nanoparticles across asymmetric membranes[J]. Soft Matter, 2013, 9(4): 1281-1286.
[9] Marinko J T, Huang H, Penn W D, et al. Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis[J]. Chemical Reviews, 2019, 119(9): 5537-5606.
[10] Goossens K, Winter H D. Molecular dynamics simulations of membrane proteins: An overview[J]. Journal of Chemical Information and Modeling, 2018, 58(11): 2193-2202.