[1] Gehring F W, Palka B P. Quasiconformally homogeneous domains[J]. Journal d′Analyse Mathématique, 1976, 30(1): 172-199.
[2] Gehring F W, Osgood B G. Uniform domains and the quasihyperbolic metric[J]. Journal d′Analyse Mathématique, 1979, 36(1): 50-74.
[3] Visl J. The free quasiworld. Freely quasiconformal and related maps in Banach spaces[J]. Banach Center Publications, 1999, 48(1): 55-118.
[4] Tukia P, Visl J. Quasisymmetric embeddings of metric spaces[J]. Annales Academiae Scientiarum Fennicae Series A I Mathematica, 1980, 5: 97-114.
[5] Rasila A, Talponen J. On quasihyperbolic geodesics in Banach spaces[J]. Annales Academiae Scientiarum Fennicae Mathematica, 2014, 39: 163-173.
[6] Rasila A, Talponen J. Convexity properties of quasihyperbolic balls on Banach spaces[J]. AnnalesAcademiae Scientiarum Fennicae Mathematica, 2012, 37: 215-218.
[7] 钟根红,李林钟,马晓艳. 广义三角函数与双曲函数的 WilkerHuygens型不等式[J].浙江理工大学学报(自然科学版), 2019, 41(1): 118-121.
[8] Herron D, Buckley S. Quasihyperbolic geodesics are hyperbolicquasigeodesics[J]. Journal of the European Mathematical Society, 2020, 22:1917-1970.
[9] Heinonen J, Koskela P. Quasiconformal maps in metric spaces with controlled geometry[J]. Acta Mathematica, 1998, 181(1): 1-61.
[10] Huang X, Liu J. Quasihyperbolic metric and quasisymmetric mappings in metric spaces[J]. Transactions of the American Mathematical Society, 2015, 367(9): 6225-6246.