[1] Abdelbasir S M, Shalan A E. An overview of nanomaterials for industrial wastewater treatment[J]. Korean Journal of Chemical Engineering, 2019,36(8): 1209-1225.
[2] Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater[J]. Bioengineered, 2021,12(1): 70-87.
[3] Huang Y Y, Zhou B H, Han R R, et al. China’s industrial gray water footprint assessment and implications for investment in industrial wastewater treatment[J]. Environmental Science and Pollution Research, 2020,27(7): 7188-7198.
[4] Gunes Y, Barut F, Kaykioglu G, et al. Comparison of ozonation, adsorption and air stripping process for ammonia nitrogen removal from real textile wastewater[J]. Sigma Journal of Engineering and Natural Sciencessigma Muhendislik Ve Fen Bilimlerl Dergisi, 2020,38(3): 1179-1189.
[5] Saxena A, Gupta S. Bioefficacies of microbes for mitigation of azo dyes in textile industry effluent: A review[J]. Bioresources, 2020,15(4):9858-9881.
[6] Berkessa Y W, Lang Q L, Yan B H, et al. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis[J]. Desalination, 2019,465: 94-103.
[7] Liu H B, Ying Q Y, Li C Y, et al. Enhanced removal of antimony in dyeing wastewater by mixing Fe3O4 with manganese sand filter material[J]. Water Environment Research, 2020,92(8): 1208-1213.
[8] Bai Y, Wu F, Gong Y Y. Oxidation and adsorption of antimony(iii) from surface water using novel Al2O3supported FeMn binary oxide nanoparticles: effectiveness, dynamic quantitative mechanisms, and life cycle analysis[J]. Environmental ScienceNano, 2020,7(10): 3047-3061.
[9] Ren S C, Ai Y J, Zhang X Y, et al. Recycling antimony(III) by magnetic carbon nanospheres: Turning waste to recoverable catalytic for synthesis of esters and triazoles[J]. ACS Sustainable Chemistry & Engineering, 2020,8(1): 469-477.
[10] Wang N N, Deng N R, Qiu Y Y, et al. Efficient removal of antimony with natural secondary iron minerals: Effect of structural properties and sorption mechanism[J]. Environmental Chemistry, 2020,17(2): 332-344.
[1]薛辉,蔡玉荣,姚菊明. 微乳液法制备多孔中空羟基磷灰石微球的研究[J].浙江理工大学学报,2011,28(03):338.
XUE Hui,CAI Yu rong,YAO Ju ming. Study on Porous Hydroxyapatite Microsphere with an Internal Cavity by Emulsion Method[J].Journal of Zhejiang Sci-Tech University,2011,28(自科六):338.
[2]钟云平,姚晨雪,宋国龙,等.纳米羟基磷灰石携载lefty 1基因对人乳腺癌细胞的杀伤效应[J].浙江理工大学学报,2016,35-36(自科3):450.
ZHONG Yunping,YAO Chenxue,SONG Guolong,et al.Killing Effect of Nanohydroxyapatite Loading Lefty 1 Gene on Human Breast Carcinoma Cells[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科六):450.
[3]钟奇伟,蔡玉荣.球形碳酸钙/羟基磷灰石的制备及药物控释[J].浙江理工大学学报,2016,35-36(自科5):474.
ZHONG Qiwei,CAI Yurong.Preparation of CaCO 3 and Hydroxyapatite Microsphere and Its Potential Application in Drug Controlled Release[J].Journal of Zhejiang Sci-Tech University,2016,35-36(自科六):474.
[4]何欢,董文韬,郑娓诗,等.纳米羟基磷灰石颗粒负载p53基因对肝癌干细胞抑制效果[J].浙江理工大学学报,2017,37-38(自科2):270.
HE Huan,DONG Wentao,ZHENG Weishi,et al.Inhibition Effect of p53Gene Loaded by Hydroxyapatite Nanoparticles on Hepatic Cancer Stem Cells[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科六):270.
[5]崔正阳,罗丹丹,冯翠,等.碲化镉量子点掺杂的羟基磷灰石荧光探针制备及其在铜离子检测中的应用[J].浙江理工大学学报,2019,41-42(自科一):49.
CUI Zhengyang,LUO Dandan,FENG Cui,et al.Preparation of hydroxyapatite fluorescent probe doped with CdTe quantum dots and its application in copper ion detection[J].Journal of Zhejiang Sci-Tech University,2019,41-42(自科六):49.
[6]马炳荣,洪子奇,易秉智,等.高比表面积羟基磷灰石的制备及其在磷酸铁废水除氟中的应用[J].浙江理工大学学报,2024,51-52(自科四):427.
MA Bingrong,HONG Ziqi,YI Bingzhi,et al.Preparation of hydroxyapatite with high specific surface and its application in defluoridation of ferric phosphate wastewater[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科六):427.