[1] Naebe M, Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties [J]. Appled Materials Today, 2016, 5: 223-245.
[2] Chen D, Yang J, Kitipornchai S. Elastic buckling and static bending of shear deformable functionally graded porous beam[J]. Composite Structures, 2015, 133: 54-61.
[3] Hassani A, Habibolahzadeh A, Bafti H. Production of graded aluminum foams via powder space holder technique[J]. Materials & Design, 2012, 40: 510-515.
[4] 孙昊栋, 马连生. 热载荷作用下梯度多孔材料梁的非线性力学行为[C]//中国力学大会(CCTAM 2019). 杭州: 中国力学学会, 2019: 90-98.
[5] 王佳优, 马广朋, 康帅帅, 等. 相变温控导热增强的多孔金属梯度优化设计[J]. 计算力学学报, 2019, 36(3): 338-344.
[6] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams[J]. Composites Science and Technology, 2017, 142: 235-245.
[7] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890.
[8] Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets[J]. Materials & Design, 2017, 116: 656-665.
[9] Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on ChebyshevRitz method[J]. Composite Structures, 2018, 193: 281-294.
[10] Li K Y, Wu D, Chen X J, et al. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets[J]. Composite Structures, 2018, 204: 114-130.