|本期目录/Table of Contents|

[1]陈巧红,李妃玉,贾宇波,等.基于自注意力和门控机制的答案选择模型[J].浙江理工大学学报,2021,45-46(自科三):400-407.
 CHEN Qiaohong,LI Feiyu,JIA Yubo,et al.Answer selection model based on selfattention and gating mechanism[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科三):400-407.
点击复制

基于自注意力和门控机制的答案选择模型()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第45-46卷
期数:
2021年自科第三期
页码:
400-407
栏目:
出版日期:
2021-04-28

文章信息/Info

Title:
Answer selection model based on selfattention and gating mechanism
文章编号:
1673-3851 (2021) 05-0400-08
作者:
陈巧红李妃玉贾宇波孙麒
浙江理工大学信息学院,杭州 310018
Author(s):
CHEN Qiaohong LI Feiyu JIA Yubo SUN Qi
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
答案选择层叠自注意力注意力机制门控机制
分类号:
TP391
文献标志码:
A
摘要:
针对现有答案选择方法语义特征提取不充分和准确性差的问题,引入自注意力和门控机制,提出了一种答案选择模型。该模型首先在问题和答案文本内部利用层叠自注意力进行向量表示,并在自注意力模块中让单词和位置分开进行多头注意力;然后将答案句通过卷积神经网络(Convolutional neural network, CNN)得到的向量表示输入注意力层,根据问题生成与问题相关的答案表示,并通过门控机制融合两种表示;最后计算问题和答案文本的相关性分数,得到候选答案的排名和标注。结果表明:该模型与双向长短时记忆网络模型、自注意力模型和基于注意力的双向长短时记忆网络模型相比,在WebMedQA数据集上平均倒数排名分数分别提高了837%、479%和203%,预测答案正确率也有提高。这表明提出的模型能够捕获更丰富的语义信息,有效提升了答案选择的性能。

参考文献/References:

[1] Fan H J, Ma Z Y, Li H Q, et al. Enhanced answer selection in CQA using multidimensional features combination[J]. Tsinghua Science and Technology, 2019, 24(3): 346-359.
[2] Heilman M, Smith N A. Tree edit models for recognizing textual entailments, paraphrases, and answers to questions[C]//Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics. California, USA: Association for Computing Machinery, 2010: 1011-1019.
[3] Chan W, Zhou X D, Wang W, et al. Community answer summarization for multisentence question with group L1 regularization [C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: Association for Computational Linguistics, 2012: 582-591.
[4] Chen Z W, He Z, Liu X W, et al. Evaluating semantic relations in neural word embeddings with biomedical and general domain knowledge bases[J]. BMC Medical Informatics & Decision Making, 2018, 18(2):53-68.
[5] Zhou X Q, Hu B T, Chen Q C, et al. Answer sequence learning with neural networks for answer selection in community question answering [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Beijing, China: Association for Computational Linguistics, 2015: 713-718.
[6] Wakchaure M, Kulkarni P. A scheme of answer selection in community question answering using machine learning techniques [C]//2019 International Conference on Intelligent Computing and Control Systems (ICCS). Madurai, India: IEEE, 2019: 879-883.
[7] Tan M, dos Santos C, Xiang B, et al. Improved representation learning for question answer matching[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: Association for Computational Linguistics, 2016: 464-473.
[8] 熊雪, 刘秉权, 吴翔虎. 基于注意力机制的答案选择方法研究[J]. 智能计算机与应用, 2018, 8(6):90-93.
[9] Shao T H, Guo Y P, Chen H H, et al. Transformerbased neural network for answer selection in question answering[J]. IEEE Access, 2019, 99(7):146-156.
[10] 谢正文, 柏钧献, 熊熙, 等. 基于增强问题重要性表示的答案选择算法研究[J]. 四川大学学报(自然科学版), 2020, 57(1): 66-72.

备注/Memo

备注/Memo:
收稿日期:2021-02-01
网络出版日期:2021-03-30
基金项目:浙江理工大学中青年骨干人才培养经费项目
作者简介:陈巧红(1978-),女,浙江临海人,副教授,博士,主要从事计算机辅助设计及机器学习技术方面的研究
更新日期/Last Update: 2021-06-29