[1] Li T Y, Kabanikhin S, Nakamura G, et al. An inverse problem of triplethickness parameters determination for thermal protective clothing with StephanBoltzmann interface conditions[J]. Journal of Inverse and IllPosed Problems, 2019, 28(3): 411-424.
[2] 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(1): 111-118.
[3] 彭鹏, 徐定华. 热防护服中反常热扩散方程Robin问题的条件适定性[J]. 浙江理工大学学报(自然科学版), 2020, 43(2): 267-271.
[4] Torvi D A, Douglas Dale J, Faulkner B. Influence of air gaps on benchtop test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1): 1-12.
[5] Torvi D A, Douglas Dale J. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
[6] Mell W E, Lawson J R. A heat transfer model for firefighter′s protective clothing[J]. Fire Technology, 2000, 36(1): 39-68.
[7] Ghazy A, Bergstrom D J. Numerical simulation of heat transfer in firefighters′ protective clothing with multiple air gaps during flash fire exposure[J]. Numerical Heat Transfer, Part A: Applications, 2012, 61(8): 569-593.
[8] Xu D H, Wen L, Xu B X. An inverse problem of Bilayer textile thickness determination in dynamic heat and moisture transfer[J]. Applicable Analysis, 2014, 93(3): 445-465.
[9] Xu D H, Cui P. Simultaneous determination of thickness, thermal conductivity and porosity in textile material design[J]. Journal of Inverse and IllPosed Problems, 2016, 24(1): 59-66.
[10] Zhang Z Q, Karniadakis G E. Stochastic collocation methods for differential equations with white noise[M]//Numerical Methods for Stochastic Partial Differential Equations with White Noise. Cham: Springer International Publishing, 2017: 191-214.
[1]张艺强,陈扬,范艳娟,等.空气层对织物热传递影响的模拟分析[J].浙江理工大学学报,2017,37-38(自科5):616.
ZHANG Yiqiang,CHENG Yang,FAN Yanjuan,et al.Simulation Analysis of the Influence of Air Layeron Fabric Heat Transfer[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科二):616.