|本期目录/Table of Contents|

[1]王建国,郑芳英,胡觉亮.求解单二次约束非凸二次规划问题的全局最优DC算法[J].浙江理工大学学报,2021,45-46(自科二):249-255.
 WANG Jianguo,ZHENG Fangying,HU Jueliang.A globally optimal DC algorithm for solving single quadratic constrained nonconvex quadratic programming problems[J].Journal of Zhejiang Sci-Tech University,2021,45-46(自科二):249-255.
点击复制

求解单二次约束非凸二次规划问题的全局最优DC算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第45-46卷
期数:
2021年自科第二期
页码:
249-255
栏目:
出版日期:
2021-03-10

文章信息/Info

Title:
A globally optimal DC algorithm for solving single quadratic constrained nonconvex quadratic programming problems
文章编号:
1673-3851 (2021) 03-0249-07
作者:
王建国郑芳英胡觉亮
浙江理工大学理学院,杭州 310018
Author(s):
WANG Jianguo ZHENG Fangying HU Jueliang
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
非凸二次规划DC算法KKT点全局最优解
分类号:
O224
文献标志码:
A
摘要:
针对单二次约束的非凸二次规划问题,首先提出一种DC算法,并证明了该算法收敛到问题的KarushKuhnTucker(KKT)点;其次利用KKT点提出了寻找新的初始可行点的方法;最后结合此方法,设计了一个求单二次约束非凸二次规划问题全局最优解的DC算法。数值结果表明,该全局算法能有效找到大规模单二次约束非凸二次规划问题的全局最优解。

参考文献/References:

[1] Moré J J, Sorensen D C. Computing a trust region step[J]. SIAM Journal on Scientific and Statistical Computing, 1983, 4(3): 553-572
[2] Adachi S, Iwata S, Nakatsukasa Y, et al. Solving the trustregion subproblem by a generalized eigenvalue problem[J]. SIAM Journal on Optimization, 2017, 27(1): 269-291
[3] Hazan E, Koren T. A lineartime algorithm for trust region problems[J]. Mathematical Programming, 2016, 158(1/2): 363-381
[4] Martínez J M. Local minimizers of quadratic functions on euclidean balls and spheres[J]. SIAM Journal on Optimization, 1994, 4(1): 159-176
[5] Wang J L, Xia Y. Closing the gap between necessary and sufficient conditions for local nonglobal minimizer of trust region subproblem[J]. SIAM Journal on Optimization, 2020, 30(3): 1980-1995
[6] Lucidi S, Palagi L, Roma M. On some properties of quadratic programs with a convex quadratic constraint[J]. SIAM Journal on Optimization, 1998, 8(1): 105-122
[8] An L T H, Tao P D. DC programming and DCA: thirty years of developments[J]. Mathematical Programming, 2018, 169(1): 5-68
[9] Pardalos P M, Vavasis S A. Quadratic programming with one negative eigenvalue is NPhard[J]. Journal of Global Optimization, 1991, 1(1): 15-22
[10] Pardalos P M, Schnitger G. Checking local optimality in constrained quadratic programming is NPhard[J]. Operations Research Letters, 1988, 7(1): 33-35

相似文献/References:

[1]章显业,罗和治.带凸二次约束非凸二次规划的双非负规划松弛及其解法[J].浙江理工大学学报,2022,47-48(自科四):601.
 ZHANG Xianye,LUO Hezhi.Doubly non negative programming relaxation for non convex quadratic programming with convex quadratic constraint and its solution[J].Journal of Zhejiang Sci-Tech University,2022,47-48(自科二):601.
[2]李叶,洪陈春,罗和治.两阶段金融衍生品清算问题的半定规划松弛方法[J].浙江理工大学学报,2024,51-52(自科四):566.
 LI Ye,HONG Chenchun,LUO Hezhi.The semi definite programming relaxation method for two period  financial derivatives′ liquidation problem[J].Journal of Zhejiang Sci-Tech University,2024,51-52(自科二):566.

备注/Memo

备注/Memo:
收稿日期:2020-10-12
网络出版日期:2021-01-05
基金项目:浙江省自然科学基金项目(LY19A010025)
作者简介:王建国(1996-),男,安徽濉溪人,硕士研究生,主要从事非线性规划理论与算法方面的研究
通信作者:郑芳英,E-mail:zfy@zstu.edu.cn
更新日期/Last Update: 2021-03-23