[1] Adler R. The crystal ball of chaos[J]. Nature, 2001, 414(6863): 480-481.
[2] 赵冬至. 中国典型海域赤潮灾害发生规律[M]. 北京:海洋出版社, 2010: 66-76.
[3] Fussmann G F, Ellner S P, Shertzer K W, et al. Crossing the Hopf bifurcation in a live predatorprey system[J].Science, 2000, 290(5495): 1358-1360.
[4] 欧阳颀. 反应扩散系统中的图灵斑图动力学介绍:非线性科学专题之十[J]. 物理通报, 1999(5): 4-7.
[5] Turing A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952, 237(641): 37-72.
[6] Pearson J E. Complex patterns in a simple system[J]. Science, 1993, 261(5118): 189-192.
[7] Potapov A B, Hillen T. Metastability in chemotaxis models[J]. Journal of Dynamics and Differential Equations, 2005, 17(2): 293-330.
[8] Ma M J, Wang Z A. Global bifurcation and stability of steady states for a reactiondiffusionchemotaxis model with volumefilling effect[J]. Nonlinearity, 2015, 28(8): 2639-2660.
[9] Li J, Song Y Z, Wan H, et al. Dynamical analysis of a toxinproducing phytoplanktonzooplankton model with refuge[J]. Mathematical Biosciences and Engineering, 2017, 14(2): 529-557.
[10] 张真真, 曼合布拜·热合木.一类浮游动植物模型的全局稳定性[J]. 新疆大学学报(自然科学版), 2015,32(4): 410-417.