|本期目录/Table of Contents|

[1]王玮,徐定华.Volterra型积分方程晶核成长模型及其数值算法[J].浙江理工大学学报,2020,43-44(自科五):722-729.
 WANG Wei,XU Dinghua.Crystal nucleus growth model of Volterra integral equation and its numerical algorithm[J].Journal of Zhejiang Sci-Tech University,2020,43-44(自科五):722-729.
点击复制

Volterra型积分方程晶核成长模型及其数值算法()
分享到:

浙江理工大学学报[ISSN:1673-3851/CN:33-1338/TS]

卷:
第43-44卷
期数:
2020年自科五期
页码:
722-729
栏目:
出版日期:
2020-09-18

文章信息/Info

Title:
Crystal nucleus growth model of Volterra integral equation and its numerical algorithm
文章编号:
1673-3851 (2020) 05-0722-08
作者:
王玮徐定华
浙江理工大学理学院,杭州 310018
Author(s):
WANG Wei XU Dinghua
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
关键词:
Volterra型积分方程唯一性数值算法成核率生长率
分类号:
O242-1
文献标志码:
A
摘要:
在高性能催化剂颗粒的制备过程中,介尺度晶核成核与生长可描述为一类非线性耦合的三维Volterra型积分方程模型。针对该模型,首先根据均相成核理论,进行先验信息假设,获得了同时反演成核率和生长率的唯一性结论;然后针对该反问题的不稳定性和数值格式的病态性,提出了该反问题的正则化方法,构造了数值算法,数值算例结果验证了数值算法的有效性。理论结果及数值模拟结果显示了介尺度成核与生长规律,可为催化剂制备提供一定的科学依据。

参考文献/References:

[1] 张继光. 催化剂制备过程技术[M]. 北京: 中国石化出版社, 2004.
[2] Cui X J, Xu J, Zhang C H, et al. Effect of pretreatment on precipitated FeMo FischerTropsch catalysts: Morphology, carburization, and catalytic performance[J]. Journal of Catalysis, 2011, 282(1): 35-46.
[3] 刘光照, 朱亚男. 晶体成核理论[J]. 人工晶体, 1981, 10(2): 1-33.
[4] Liu Y K, Jiang D J, Yamamoto M. Inverse source problem for a double hyperbolic equation describing the threedimensional time cone model[J]. SIAM Journal on Applied Mathematics, 2015, 75(6): 2610-2635.
[5] Xu D H, Li F X, Li X N,et al. Mesoscale modeling of the crystallization parameters identification during the ironbased catalyst preparation process: the dilute concentration case[J]. Applicable Analysis, 2018: 1-19.
[6] 路见可, 钟寿国. 积分方程论[M]. 武汉: 武汉大学出版社, 2008: 16-23.
[7] Linz P. Analytical and Numerical Methods for Volterra Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1985: 29-76.
[8] Kaltenbacher B. A convergence analysis of the midpoint rule for first kind Volterra integral equations with noisy data[J]. Journal of Integral Equations and Applications, 2010, 22(2): 313-339.
[9] Okrasiński W. Nontrivial solutions to nonlinear Volterra integral equations[J]. SIAM Journal on Mathematical Analysis, 1991, 22(4): 1007-1015.
[10] Nedaiasl K, Dehbozorgi R, Maleknejad K. Hpversion collocation method for a class of nonlinear Volterra integral equations of the first kind[J]. Applied Numerical Mathematics, 2020, 150: 452-477.

相似文献/References:

[1]潘启天,徐映红,徐定华.基于热湿耦合模型的三层多孔织物厚度决定反问题[J].浙江理工大学学报,2017,37-38(自科6):771.
 PAN Qitian,XU Yinghong,XU Dinghua.An Inverse Problem of Thickness Determination for ThreeLayerPorous Fabric Based on a Coupled Heat and Moisture Model[J].Journal of Zhejiang Sci-Tech University,2017,37-38(自科五):771.
[2]冉丽霞,陈涌.耗散修正的CamassaHolm方程解的存在唯一性[J].浙江理工大学学报,2018,39-40(自科6):759.
 RAN Lixia,CHEN Yong.Existence and uniqueness of solution to the dissipation modified CamassaHolm equation[J].Journal of Zhejiang Sci-Tech University,2018,39-40(自科五):759.

备注/Memo

备注/Memo:
收稿日期:2019-10-25
网络出版日期:2020-04-02
基金项目:国家自然科学基金项目(11871435, 91534113)
作者简介:王玮(1995-),女,安徽芜湖人,硕士研究生,主要从事偏微分方程反问题方面的研究
通信作者:徐定华,E-mail:dhuxu6708@zstu.edu.cn
更新日期/Last Update: 2020-09-15