[1] Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M]. Springer, 2010:169-181.
[2] Zou H, Hastie T, Tibshirani R. Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286.
[3] Boufounos P T, Baraniuk R G. 1Bit compressive sensing[C]//2008 42nd Annual Conference on Information Sciences and Systems(CISS). Princeton, NJ, USA: IEEE, 2008, 3: 16-21.
[4] Luss R, Teboulle M. Convex approximations to sparse PCA via lagrangian duality[J]. Operations Research Letters, 2011, 39(1):57-61.
[5] Luss R, Teboulle M. Conditional gradient algorithms for rankone matrix approximations with a sparsity constraint[J]. SIAM Review, 2013, 55(1): 65-98.
[6] Yuan X T, Zhang T. Truncated power method for sparse eigenvalue problems[J]. Journal of Machine Learning Research, 2013, 14: 899–925
[7] Merola G M, Chen G M. Projection sparse principal component analysis: An efficient least squares method[J]. Journal of Multivariate Analysis, 2019, 173: 366-382.
[8] Hager W W, Phan D T, Zhu J J. Projection algorithms for nonconvex minimization with application to sparse principal component analysis[J]. Journal of Global Optimization, 2016, 65(4): 657-676.
[9] Jacques L, Laska J N, Boufounos P T, et al. Robust 1bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Transactions on Information Theory, 2013, 59(4): 20822102.
[10] Yan M, Yang Y, Osher S. Robust 1bit compressive sensing using adaptive outlier pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3868-3875.